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ABSTRACT: A new matrix on the covariance of covariance is formed from the auto/cross-
correlation function of acceleration responses of a structure under white noise ambient 
excitation. The components of the covariance matrix are proved to be function of the modal 
parameters (modal frequency, mode shape and modal damping) of the structure. The number of 
vibration modes associated with components of the matrix is only limited by the sampling 
frequency. Compared to the general methods for extracting modal parameters, the formulated 
covariance matrix contains more information on the vibration modes of the structure. An in-
service suspension bridge is analyzed. Only the output acceleration responses are used to 
compute the covariance of covariance (CoC) matrix and the Pattern Assurance Criterion (PAC) 
values. From the CoCs variation and the changing trend of the PAC curve, the healthy condition 
of the bridge is assessed. 

1 INTRODUCTION 

The information required for system identification or damage detection of a dynamic system 
generally consists of both the input force and the resulting response. However, it would be very 
difficult and sometimes impossible to measure the actual excitation (such as wind, vehicular and 
wave excitation) for a large structure (such as bridges, offshore platforms, and wind turbines) 
[ Shen et al (2003) ]. The huge amount of energy necessary to create structural vibrations may 
cause local damage in the structure if it can be generated artificially. Therefore, system 
identification or damage detection is preferable to be done with the output response-only 
measurement. 

A new covariance matrix is formed from the auto/cross-correlation function of the acceleration 
responses of a structure under ambient white noise excitation. The components of the 
covariance matrix are proved to be function of the structural modal parameters (modal 
frequency, mode shape and modal damping) of a structure. Information from all the vibration 
modes limited by the sampling frequency contributes to these components of the matrix. The 
method is applied on an in-service suspension bridge. Six accelerometers are installed vertically 
on the bridge and the acceleration responses are measured continuously. The available data from 
April 12, 2010 to June 6, 2010 are analyzed. Two hours’ acceleration responses are used to 
compute the covariance of covariance matrix and its pattern assurance values. The trend of 
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variation of the pattern assurance values is given and long-term health monitoring of the 
structure is performed.  

2 COVARIANCE OF COVARIANCE (COC) MATRIX OF ACCELERATION 
RESPONSE 

The equation of motion of a N degrees-of-freedom (DOFs) viscous damped structural system 
under support excitation is given as 

( ) ( ) ( ) ( )st t t x
•• • ••

+ + = − × ⋅M x Cx Kx M L  (1) 

where , ,  are the  mass, damping and stiffness matrices, respectively. Matrix 
with a size of is the mapping vector relating the support DOFs with the corresponding 

DOFs of the system. x , ,  are the 

M C K NN ×
L 1N ×

•

x
••

x 1×N displacement, velocity, acceleration vectors,  
respectively. 

Environmental support excitation is universal for the whole structure, and its effect is 
represented in terms of , ,s s sx x x , which are the displacement, velocity and acceleration,   
respectively, at the degrees-of-freedoms, s, of the support of the structure.  

When sx
••

is assumed to be of ideal white noise distribution, the autocorrelation function of sx
••

 is 
[Bendat & Piersol (1993)] 

1 2 1( ( ) ( )) ( )s sE x x S 2σ σ δ σ σ
•• ••

= −  (2) 

where  is a constant defining the magnitude of excitation of S sx
••

. 
If ( )plR τ denotes the cross-covariance of the accelerations from the p th and l th DOFs of the 

system, it can be written as follows [Li & Law ( 2010)],  
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and  
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where 2i i i dic ξ ωω= − 2 2 2
i i i dd, iξ ω ω= − i is, iξ ω= , liΦ is the l th element of the i th mode 

shape . iΦ iω , diω , iξ  are the i th undamped modal frequency , damped modal frequency and 

damping ratio, and . The auto-covariance function can be derived in the same 

way by putting  in Equation (3).   

T
fi iφ = −Φ ⋅ ⋅M L

l p=

The covariance of acceleration response in Equation (3) can also be expressed as 

( ) ( , ) ( , )pl lj i l
j

R u p pτ τ= Φ =∑ Φ u τ  (6) 
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With  referring to different DOFs, the CoC matrix (denoted by in the rest of the paper) of 
acceleration responses is, 
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[ ]1 2 ml l l=l are the m  DOFs from which the acceleration responses are measured, 

p is the reference DOF of the structure, [ ]1 2 ntt t t=t denotes the time instance of the 
covariance of the acceleration response. Tp is noted to be a symmetrical matrix. 

The matrix ( ) ( ( ))Tp p⋅u u  in Equation (7) can be computed as 
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where the subscript i j  denotes the element at i th row and th column of the matrix 

. Both i  and  denote the mode number of the structure. 
× j

[ ( ) ( ( )) ]Tp p⋅u u j tΔ is the time step.  

Equation (8) shows that matrix ( ) ( ( ))Tp p⋅u u is only related to the mode shape, modal 
frequency and modal damping ratio of a structure. Then matrix Tp in Equation (7) is noted to be 
a function of the modal parameters of the structure. The change in the structural parameters is 
therefore related to the modal parameters and subsequently to the covariance of covariance 
matrix .  pT

The above formulation is based on the case with the support excitation. If the ambient white 
noise excitation is applied on the structure instead of the support, similar formulations can be 
derived just by replacing  byT

fi iφ = −Φ ⋅ ⋅M L T
fi iφ = Φ ⋅L , where Matrix L is still the 

mapping vector relating the excitation DoFs to the corresponding DoFs of the structure.  

3 MEASUREMENT ON IN-SERVICE STRUCTURES 

Accelerometers are assumed to be installed on the monitored structure. The acceleration 
responses from selected measuring points of the structure under white noise excitation are 
recorded continuously. The covariance of the acceleration responses and the covariance of 
covariance matrix are then computed as 

{ }( ) ( ) ( )ppl lR E x t x tτ τ
•• ••

= + p,     and         T
p p= ⋅T R R , (9) 

where indicates the expectation operator. The CoC matrix ( ) in Equation (9) is obtained 

by direct matrix operation from the covariance matrix 

{ }E pT

1 2
( ) ( ) ... ( )

m

T
p pl pl plR t R t R t⎡ ⎤= ⎣ ⎦R .  

A new vector of condition index, CCoC , can be formed from the components of the CoC 
matrix, pT as 

 (10) 
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4 PATTERN ASSURANCE CRITERION (PAC) METHOD 

For health monitoring of in-service structures, the condition index vector CCoC  will be 
monitored continuously.  To detect if there is a change in the structural parameters, the CCoCs 
from different time periods are computed. The general measure is the modal assurance criterion. 
It is important to recognize that this least squares based form of linear regression analysis yields 
an indicator that is most sensitive to the largest difference between comparative values 
(minimizing the squared error) and results in a modal assurance criterion that is insensitive to 
small changes and/or small magnitudes [Randall & Allemang (2003)]. Therefore in this paper, a 
new technique is proposed for comparing the two vectors 1tCCoC  and 2tCCoC  as following.  

The Pattern Assurance Criterion (PAC) value is defined as, 

If 
1

2
0

t
i
t
i

<
CCoC
CCoC

, 0ip = , Else 
1 2

2 1
min( , )

t t
i i

i t t
i i
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, ( nmi :1:1= ),  1

nm

i
i

p
P nm

==
∑

(11) 

where the subscript i denotes the i th element of the vectors 1tCCoC  and 2tCCoC , 
),min( •• means choosing the smaller element from the two elements to ensure that an element 

less than unity is chosen as the ratio value. When 1tCCoC  and 2tCCoC  are identical, the PAC 
value P is 1.0, or else, P will get a value smaller than 1.0.  

The PAC is a scalar formed as an algebraic average of the ratio of the corresponding elements 
from the two vectors in the comparison. This PAC will be shown later to be able to indicate 
small changes between two vectors. When the PAC value is below a given threshold, which can 
be defined from experience (e.g. the mean value from records of long-term health monitoring of 
a structure), the case may be considered to be possibly damaged. A trend analysis of the PAC 
values obtained from different time periods over the life span of the structure would reveal 
whether there is a damage occurrence in the structure.  It is noted that this approach is 
independent of the structural model and it can be easily performed on experimental data from 
on-line health monitoring of structures.  

5 EXPERIMENTAL ANALYSIS 

5.1 Pearl River Huangpu Bridge and sensor array 

The Pearl River Huangpu Bridge is located in Guangzhou, China. It is a cable-suspension 
bridge, consisting of a main span of approximately 1108 m, two side spans of 290 m and 350 m 
each. The roadway accommodates six lanes of traffic. The bridge was completed in 2008, and in 
2009 the main span was instrumented with 22 accelerometers as part of a health monitoring 
project. Figure 1 shows the layout of the location of all the 22 sensors mounted on the bridge. A 
summary of the sensor numbering system and measurement directions which is adopted in the 
paper is presented in Table 1. Six accelerometers mounted in the vertical direction of the bridge 
deck are used for health monitoring of the main span of the bridge. The sampling frequency is 
200 Hz. The acceleration responses from these six accelerometers are recorded continuously. 

5.2 Covariance of Acceleration Responses 

To obtain the structural modal parameters and compute the covariance of covariance, the 
covariance of acceleration responses needs to be computed firstly by Equation (9). To reduce 
the effect of non-white noise in the measurements, long-term data are used. In this paper, two 
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hours’ data, i.e. 2 60 60 200 1440000× × × = time points are involved in Equation (9). 
Acceleration responses from Accelerometer #1 are chosen as reference. The computed 

1 ( )lR τ with 15 second (3000 time points) are shown in Figure 2. It can be noticed that the 
covariance in Figure 2 (a) and (d) are similar. Other covariance curves do not have large values 
at the beginning. It is because the Tphases of acceleration responses at different locations are 
different. The vertical modal frequency of the bridge deck can be extracted from the covariance 
by Fourier transformation. The first 8 vertical modal frequencies are T0.215, 0.466, 0.881, 1.615, 
2.097, 2.243, 2.855 and 3.337 HzT. This means that the largest cycle of the bridge is T4.65 s. 

5.3 Covariance of Covariance of Acceleration Responses 

TFrom the computed covariance of acceleration, the covariance of covariance can be obtained 
from Equation (9). Since six acceleration responses are involved, the size of CoC matrix is 
T 6 6× . The reference point is still Accelerometer #1. The CoC matrices for different time period 
are computed and shown in Figure 3. The time periods are: 12:00 to 14:00, 14:00 to 16:00, 
16:00 to 18:00, 18:00 to 20:00, 20:00 to 22:00, 22:00 to 24:00, April 12, 2010; 12:00 to 14:00, 
14:00 to 16:00, 16:00 to 18:00, April 13, 2010. The data from other time periods in April 12, 
2010 are bad data and they can not be used. The distributions for the CoC matrix are similar. 
For example the components at (1,1), (2,2) , (2,5), (3,3), (3,6) are bigger.  

When the CoC matrix is converted into a vector, the condition index vector CCoC is obtained. 
To increase the number of components of CCoC, Accelerometer #1 to #6 are regarded as 
reference points, respectively. All six CoC matrices can be obtained in a similar way as 
described above. The diagonal components of CoC matrix are selected to form the CCoC with 
the size of 36 1× . Since the magnitude of excitation is different at different time periods, which 
will affect the magnitude of CoC matrix, normalization is necessary. The normalization method 

is adopted that the Frobenius norm is 1, i.e 
2

CCoC
CCoC

. The available data from 12:00, April 12, 

2010 to 12:00, June 6, 2010 are analyzed. There are 46 sets of acceleration responses each 
lasting two hours which are analyzed and 46 CCoCs are formed and shown in Figure 4. It can 
be clearly seen that the distributions of CCoCs are similar. These distributions indicate that the 
bridge behaves regularly and no Tabnormity T appears. 

5.4 PAC Value Variation  

TTo further estimate the condition of the bridge, the PAC value is computed by  
Equation (12) from the CoC matrix and the CCoC vector. The reference CCoC vector in 
Equation (11) is obtained from the mean value of all CCoCs from long-term measurements. All 
46 PAC values are obtained and are shown in Figure 5. It can be seen that these PAC values are 
mostly in the range of 0.8 to 0.9. The smallest value is 0.7621 which is from the data measured 
during 10:00 to 12:00, April 15, 2010. The largest value is 0.9582 which is from 12:00 to 14:00, 
April 13, 2010. The fitted curve is also shown in the figure. The curve is steady. It means that 
the condition vectors CCoC are highly similar and the structural condition does not change 
obviously. Though the ideal PAC value for the unchanged structure is 1.0, the obtained results 
are acceptable because the bridge is subject to complex excitation and the excitation is possible 
to deviate from white noise distribution. If the bridge parameters change obviously, it is 
expected that the PAC value will decrease notably and the curve fitting will go downwards. It 
should be noted that further work should be done to validate that. But it is out of the scope of 
this paper. 
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6 CONCLUSIONS  

The covariance of covariance of acceleration response of a structure is formulated and proved to 
be function of the modal frequencies and mode shapes limited by the sampling frequency. The 
experimental CoC matrix is easily obtained from acceleration responses. From the above 
experimental analysis of the measured data, it can be seen that from the variation of PAC values 
of CoC matrix, the condition of the bridge can be assessed. Only several accelerometers are 
used with continuous monitoring of acceleration responses. The CoC matrix is suitable for 
analyzing the huge amount of measurement data. The method relies on output-only data without 
analytical model. It can be said that the proposed CoC Matrix is appropriate for long-term 
health monitoring of in-service structures. 
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Table 1. Sensor locations  

Category of sensor 

and station no. 
Sensor location 

Sensor 

direction w.r.t. 

bridge 

#1 B-B section Truss downstream z 

#2 C-C section Truss downstream z 

#3 D-D section Truss downstream  z 

#4 B-B section Truss top, i.e. upstream z 

#5 C-C section Truss top, i.e. upstream z 

#6 D-D section Truss top, i.e. upstream z 
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Figure 1 Accelerometer locations and directions for the instrumentation network on the Pearl River Huangpu Bridge 
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Figure 3 − the CoC matrix with reference of Accelerometer #1
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Figure 5 - the PAC value for 46 time periods
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Figure 4 − the normalized condition vector CCoC
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