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ABSTRACT: This paper introduces a new research project called InfraWatch2 that 
demonstrates the many challenges that a large complex data analysis application has to offer in 
terms of data management and analysis. The project is concerned with intelligent monitoring 
and analysis of large data streams derived from large infrastructural projects in the public 
domain, with the specific aim of Structural Health Monitoring. The project focuses on an 
important highway bridge in the Netherlands, which is currently equipped with a multitude of 
vibration and strain sensors, a video camera and weather station. Within the framework of this 
paper, many large scale data mining settings will be considered, such as analysing patterns in 
the streams of sensor output, the discovery of relations between different sensors, as well as 
analyzing trends over time. The paper will provide an overview of the large data streams that 
are involved and how relevant management information can be distilled. 

1 INTRODUCTION 

In this paper, we consider the challenge of dealing with the large volumes of data generated by 
sensor systems installed on large infrastructural assets. With a variety of sensors becoming ever 
cheaper, and the cost of data storage and processing decreasing, it is quickly becoming attractive 
to fit both new and existing bridges, tunnels and so forth, with large collections of sensors that 
continuously monitor the physical and structural state of various details of the infrastructure. 
Because sensors often have the potential of measuring at high frequency, an asset fitted with 
several hundreds of sensors can produce considerable streams of data around the clock, and 
serious attention will need to be given to storing and transporting this data. In this text, we 
sketch some possibilities for how to manage this deluge of data, as well as how this potentially 
rich source of data can be exploited for monitoring the health of the infrastructure and managing 
its use by the public. 

We assume here that we are dealing with an asset that is fitted with a generic sensor network. 
That is, the network is not so much designed for one specific application, but rather should be 
able to support a range of goals, with different requirements on the number of sensors involved, 
the measurement interval and so in. This means that the data management strategy adopted 
cannot assume any limitations in scope, and should thus be designed to handle the maximum 
volume of data coming in from the sensor collection. In fact, the specific implementation that 
inspired our work (of which more below) assumes that all data produced by the sensors at the 
                                                      
2 InfraWatch is part of the national STW Perspectief program “Integral Solutions for Sustainable 
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highest reasonable frequency is being handled and stored off-site, to allow for every conceivable 
future analysis question. Of course, a number of applications that rely on this sensor network 
require only a subset of this data, but often, these applications will need to work alongside each 
other, such that the limitation of scope of each individual application does not necessarily 
reduce the total volume of data. 

As an example of how different applications may pose different requirements on the scope of 
the data, consider an application that examines seasonal effects in traffic over a bridge, as well 
as a monitoring application that is allowing human managers to get a high-level impression of 
the recent state of the bridge, possibly including a live video stream of the traffic over the 
bridge. For the monitoring application, no long term storage is required, and only a small 
selection of sensors may be required, producing fairly low-frequency data. Although this 
application deals with only reasonably small volumes of data, it does however require the data 
to be very recent, if not instantaneous. Therefore, transporting data periodically from the site to 
the monitoring office is not acceptable. In the seasonal analysis application, on the other hand, it 
may be quite acceptable to not have the latest data, as long as data over a long period of time 
(including multiple seasons) is available, and all sensors are included in the data. Because the 
long-term analysis should not get in the way of the on-line monitoring, the data management 
should be flexible enough to allow multiple applications with different data scopes.  

To characterize the volume of data coming from a sensor network, or analogously, the data 
scope of an application, one can essentially use the following four variables: 

• Frequency. A higher frequency obviously leads to a larger data volume. 

• Number of sensors. As mentioned, we assume a network comprised of many, typically 
cheap, sensors, such that a range of applications is supported. The sensors will often 
exhibit certain levels of redundancy 

• Measuring interval. We assume the system to work over the entire lifespan of the asset 
or the sensors, although specific application will typically not involve all this data. 

• Latency. Shorter latencies allow for real-time operations.  

In this paper, we do not limit the discussion to the 
challenges of large data stream management. We 
also sketch a number of both well-established as 
well as novel data analysis techniques to support 
a number of information needs owners of the 
asset may have. The techniques vary in their 
computational complexity, but even for the 
simplest analysis techniques, special 
computational facilities will be required in order 
to operate them on the gigabytes of data that can 
be expected from networks as described above. 

1.1 The InfraWatch Project 

The InfraWatch project, which inspired this 
work, is centred on an important highway bridge 
that is already producing substantial quantities of 
data: the Hollandse Brug. This bridge is located 
between the provinces Flevoland and Noord-
Holland in the Netherlands, which is where the 

 

Figure 1. Aerial picture of the situation of 
the Hollandse Brug, which connects the 
island Flevoland to the province Noord-
Holland. 
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Gooimeer joins the IJmeer (see Figure 1). The bridge was opened in June 1969, and since then 
is used by national Road A6. There is also a connection for rail parallel to the highway bridge, 
as well as a lane for cyclists on the west side of the car bridge. In April 2007 it was announced 
that measurements would have shown that the bridge did not meet the quality and security 
requirements. Therefore, the bridge was closed in both directions to freight traffic on April 27, 
2007. The repairs were launched in August 2007 and a consortium of companies, Strukton, 
RWS and Reef has installed a monitoring configuration underneath the first south span of the 
Hollandse Brug with the intent of obtaining a state-of-the-art Structural Health Monitoring 
system. This sensor network is part of the strengthening project which was necessary to upgrade 
the bridges’ capacity by overlaying. 

The monitoring system comprises 145 sensors that measure different aspects of the condition of 
the bridge, at several locations on the bridge. The following types of sensors are employed:  

• 34 geo-phones (vibration sensors) that measure the vertical movement of the bottom of 
the road-deck as well as the supporting columns. 

• 16 strain-gauges embedded in the concrete, measuring horizontal longitudinal strain, 
and an additional 34 gauges attached to the outside. 

• 28 strain-gauges embedded in the concrete, measuring horizontal strain perpendicular 
to the first 16 strain-gauges, and an additional 13 gauges attached to the outside. 

• 10 thermometers embedded in the concrete, and 10 attached on the outside. 

Furthermore, there is a weather station and a video-camera, which provides a continuous video 
stream of the actual traffic on the bridge.  

Clearly, the current monitoring set-up is already providing many challenges for data 
management. For one, the 145 sensors are producing data at rates of 100 Hz, which can amount 
to a few gigabytes of data per day. This does not include the data that represents the continuous 
stream of video. Although the InfraWatch project is in its early stage, data is already being 
gathered and monitored. However, the current data available for analysis consists of short 
snapshots of strain and video data, which is being manually transported from the site to the 
monitoring location (typically an office environment or Leiden University). 

2 DATA MANAGEMENT 

As is clear from the introduction and the description of the Hollandse Brug situation, sensor 
systems for bridge monitoring can produce substantial quantities of data. Unfortunately, the 
amount of data produced at the Hollandse Brug does not allow the storage of data on-site for 
any long period, which makes data management a vital component. Furthermore, for on-line 
monitoring of the bridge, a low latency for at least some of the data is required. The generic data 
management configuration we propose for structural asset monitoring, which is also the 
intended end-situation at the Hollandse Brug, is depicted in Figure 2. This diagram clearly 
shows the main bottleneck in the system, which is the low-bandwidth connection between the 
on-site sensor system and the servers that take care of storage and off-line analysis. 

Before discussing the details of the diagram, let’s first consider the typical volume of data 
produced at the Hollandse Brug. The 145 sensors measuring at 100 Hz produce around 56 kB of 
data per second. This amounts to about 5 GB per day, and over 1.7 TB on a yearly basis. This 
number is based on a fairly efficient data representation, whereas in a straightforward text file 

 



 

 

- 5 - 

representation, this would be at least three times as much. The video camera produces a data 
stream in a similar range, with 46 kB/s of compressed video, for a typical daytime situation. The 
diagram in Figure 2 shows both video and sensor data coming over the same connection. 
However, the nature of these two streams is quite different. Video will typically be used with 
very low latency, in order to show the current state of traffic flow. Also, video at high frame 
rates, and thus high quality, will only be used sporadically, and on specific request of the bridge 
owners. Apart from this occasional use of bandwidth, a live stream of the video will be made 
available through the project website at lower frame rates. This video stream will be 
accompanied by a low-frequency data stream of selected sensors, both for monitoring purposes 
and publishing to the Internet. Neither low-frequency stream will be stored off-site for longer 
duration. 

The data streams described so far will result in a moderate but constant use of bandwidth, with 
occasional periods of intense use for high-quality video. The remaining bandwidth will be 
available for downloading the high-frequency sensor data to the data warehouse for permanent 
storage. As immediate and constant access to this data off-line is not required, the downloading 
of recent intervals of data can be scheduled, and any delays due to monitoring can be resolved 
by downloading in more quiet times of the day (typically at night). The complete sensor data is 
stored in a central data warehouse, but a typical analysis, using the techniques described in the 
next section, will often take place on specific selections of the data, so-called data marts. These 
data marts may for example concern data for a selected period, a specific selection of sensors, or 
data that has been down-sampled. Different analysis techniques may also require different 
representations. The data storage component supports all these alternative versions of the 
original data. 

Finally, Figure 2 shows an automated monitoring component that is designed to analyse data 
instantaneously for detecting previously defined events and patterns. The specific nature of the 
events to be monitored can either be defined by the end-user, or can be derived by off-line 
analysis procedures. These procedures analyse specific selections of historic data in order to 
determine for example what constitutes an unusual event. The results of this analysis are then 
occasionally uploaded to the monitoring component. This component uses the handcrafted or 
derived definitions to monitor the occurrence of events, and either logs and counts them, or 
sends an alarm to the bridge owner. 
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Figure 2. The generic data management configuration 
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3 DATA ANALYSIS 

Although the management of huge quantities of data is a challenge in its own right, its analysis 
poses an even greater challenge. Many traditional data mining algorithm implementations, both 
research and industrial, are typically not suited to analyse terabytes of (stream) data. A 
straightforward approach that moulds the data to suit these implementations, by either cropping 
or sampling, would lose many of its interesting regularities. For example, if we sample the data 
we would preserve the effects on a monthly basis, but lose insight in how the infrastructure 
behaves dynamically on a single heavy-weight vehicle crossing the bridge. Ideally, the long- 
and short-term effects should both be available for analysis. Therefore, the aim for the 
InfraWatch project is to transform existing techniques and develop new techniques that can 
operate directly on terabytes of data, and allow for analysis on different time scales.  

Even for small fragments of data, many data mining algorithms would not operate directly on 
high-frequency continuous data streams. Typically, one would pre-process the data in order to 
discriminate different characteristic events. For example, one could discretise the measurement 
data in the amplitude domain by using thresholds, such that heavy weight trucks get assigned a 
distinct value (see Figure 3 top). While this approach works for fixed-sized databases, long-term 
effects could lead to slow drifts in our large streams, which can as a result lead to errors in our 
resulting data after pre-processing (see Figure 3 bottom).  

3.1 Analysis Tasks  

In data mining, there are many types of 
analysis tasks that are studied, even when a 
single dataset or application is given. In this 
respect, the InfraWatch project is no different. 
In this section, we will outline some of the 
analysis tasks that we deem relevant in its 
context.  

One well-known type of data mining task is 
that of mining patterns in data [Aggarwal]. 
Pattern mining focuses on finding regularities 
in the data that typically exhibits some short-
term behaviour. As an example, if we 
consider our measurement data, one of the 
many patterns could be the reoccurring and 
similar sensor data that is recorded when a 
vehicle crosses the bridge. While pattern 
mining on large fixed-sized databases already 
is faced with some challenges, its application 
to streams is even harder. Since with streams, 
one typically does not have access to all data 
at the same time to see whether a pattern 
occurs regularly in the data or not.  

In contrast, the availability of recorded data over long periods of time, such as in the InfraWatch 
case, allows for the discovery of long-term effects. The high frequency signals which harbour 
the short-term patterns can be often superimposed on low frequency signals. For example, the 
average signal values can drift over time to a higher average. Concept drift often results in the 
degradation of the performance of an earlier well-performing model of short-term events 
[Žliobaite, 2010]. In order to adjust the short-term model, we therefore need to identify the drift 
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Figure 3. Various analysis methods that can 
be applied on time series data such as 
derived from the Hollandse Brug. 
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automatically. However, the drift itself can be a very interesting signal to analyse as well. In our 
bridge example, a drift of the characteristic frequencies can be an indication whether the 
structure as a whole is beginning to deteriorate. 

Yet another analysis task focuses on the number of sensors that are installed on the bridge. Most 
streaming applications utilise only a single stream, which contrasts greatly to our 145 
continuous concurrent streams. Moreover, we have additional background knowledge that we 
can utilise in our analysis task. On the Hollandse Brug, we have installed several types of 
sensors at specific locations, and each of them measures a specific physical property of the 
system (that is, strain, vibration, etc.). Each sensor type therefore provides different insight in 
the system, and the usefulness of each of these has to be analysed. Within the project, we will 
develop new sensor types with the specific aim to increase the efficiency of the models that can 
be learned from the system.  

Building on this, we aim to develop a minimalistic system that performs well. That is, can we 
select a small set of sensors that leads to models that can do equally well in the prediction of the 
infrastructure’s degradation. A minimalistic system would be ideal to deploy at future 
infrastructure sites that could undergo a similar form of monitoring. On the Hollandse Brug, we 
have deliberately installed an abundance of sensors, in order to allow for a range of applications, 
but this could be too costly for other settings. In the early stages of the InfraWatch project, we 
have already focussed on finding a small set of relevant installed sensors, which can serve as 
‘prototypes’ for monitoring purposes. Based on a small data sample, we showed that some sets 
of sensors demonstrated similar events, which is an indication that we could reduce the number 
of sensors effectively [Koopman et. al., 2010].  

Since 2008, the team at Strukton has been gathering a huge collection of data at a high 
frequency. This vast dataset allows for the discovery of many different effects on a long or short 
term. In the context of traffic modelling, it is interesting to see the effects of traffic jams, which 
typically occur at specific time periods on working days. While these patterns would occur on a 
daily basis, weekly traffic trends would also be interesting to see. For example, a holiday would 
typically stand out given a weekly pattern in the data. Moreover, seasonal effects and even 
effects that span over multiple years can already potentially be discovered.  

3.2 Analysis Methods  

Patterns or motifs are regularly occurring subsequences within a time series as for example 
demonstrated in Figure 3. These patterns can be of use for a large number of applications; in the 
InfraWatch case, the availability of different patterns over time in the stream can be an 
indication that the infrastructure is undergoing some type of change. In order to successfully 
apply pattern mining to the InfraWatch case, we need to focus on algorithms that can handle 
large scale databases.  

A successful approach to motif finding is based on the SAX-encoding of continuous time series. 
This encoding reduces the dimensionality of the sequence both in amplitude and time. Based on 
this, [Patel et. al., 2002] have developed a method to efficiently find similar motifs within a 
large time series. This starting point has lead to many different algorithms that can deal with 
various cases, such as on-line discovery and exact or approximate motifs [Mueen et. al., 2009, 
2010]. Within the InfraWatch setting, both on-line as off-line methods need to be extended and 
developed such that they can deal with the multi-dimensionality of the data, that is, the number 
of concurrent sensors.  

Engineers typically have access to a large toolbox of building blocks and rules of thumb that 
form the basis for their design. However, in order for these to be applicable to a specific 
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situation one needs to choose the proper parameters. Consider that we have a system, with 
sensors s, which are related to each other through their position on the structure. Since the 
sensors are physically linked with each other, it is likely that this influence will be visible in the 
measurements of some of these sensors.  

Say that an engineer would assume that there are desired relations between these sensors in the 
form of the following equation:  

 

If the goal would be to select a type of concrete such that we would have specific relations 
between sensor measurements, the engineer would focus on fine tuning specific values of c. 
However, for an existing bridge with sensors installed, we need to do exactly the opposite. What 
can be seen as a form of reverse engineering, given our sensor system, we can ask the question: 
how are the sensors related? Instead of engineering the values c, we need to derive the values of 
c given the sensor data. 

Based on an initial sample of the Hollandse 
Brug measurement data, we aimed to find 
relations in the form of equations between the 
installed sensors. In order to derive such 
equations, we used the Lagramge system to fit 
equations on our sensor data [Todorovski and 
Dzeroski 1997]. Such a procedure typically 
results in many equations that can be fitted on 
the data, all of varying quality. Using a greedy 
selection procedure, we selected a qualitative 
and small set of equations that forms a 
describing model for the sensor system. 
Although this can be considered as a small 
experiment in light of the huge volumes of 
data, already some interesting equations 
became visible [Koopman et al., 2010].  

As shown in Figure 4, we see an example of 
such a relation between a set of sensors that is 
described by the following equation:   

 

Our procedure, which at present does not yet incorporate background information about the 
bridge, seems to find sets of sensors that are in close proximity of each other. This makes sense, 
since signals travelling through the concrete are likely to diminish over the distance travelled.  

Currently, we have experimented with various types of equations and search strategies, which 
all lead to similar sets of equations. Future research is needed to show if these assumptions hold 
when more data is considered, and in addition, a proper quality measure should be developed in 
order to evaluate such a minimalistic system. 

3.3 Grid Solutions 

In order to manage the magnitude of data that is associated with InfraWatch, one cannot rely on 
most existing data mining approaches. Most methods require either a reasonable part of the data 
to be in-memory or to be repeatedly scanned on disc. This makes the application of even trivial 
methods very hard on terabytes of data, as is the case in InfraWatch. To this end, one approach 
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Figure 4. Shown is a detail of the cross 
section of the Hollandse Brug with some of 
its sensors (top). One sensor is strongly 
correlated with a set of other sensors in the 
system (bottom).  
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is to apply grid techniques that can distribute one huge analysis task over thousands of 
computing nodes in order to make the tasks more feasible.  

The application of grid techniques to data mining is not new. For example, a recent initiative, 
Weka4WS, has ported the well known Weka data mining platform to grid architectures [Talia 
et. al. 2005]. However, the nature of most of our analysis problems would require algorithms 
that are not readily available in Weka.  

Although grids are well-suited to crunch large collections of data, they do this in a certain 
fashion. Many grid-enabled algorithms break down the dataset in small fragments, which are 
forwarded to the individual nodes for detailed analysis. However, in many data mining 
problems, many possible hypotheses have to be evaluated on all of the data. How to develop 
grid-enabled algorithms that can cope with our type of streams is a challenge to be addressed.  

4 CONCLUSION 

In this paper we have introduced the InfraWatch project, which is an infrastructure monitoring 
project centred on a highway bridge in the Netherlands: the Hollandse Brug. We have outlined 
the background of this project and infrastructure setting, and discussed data management issues 
on the bridge and on infrastructural assets in general. Our current focus is on making the 
analysis of the gathered data feasible, as the involved data volumes are huge. After discussing 
how these data volumes can be successfully managed, we discuss how and what type of analysis 
we see fit for our current scope.  
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