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ABSTRACT: Damage identification of in-service engineering systems is important from the 
viewpoint of safety and maintenance. Using structural identification algorithms, the physical or 
modal parameters of a structure can be identified from measured data.  Based on changes of 
these critical structural parameters, damage can then be quantified.  However, to identify a large 
scale system as a whole, numerical convergence is a challenging problem due to the large 
number of unknown parameters to be identified. The substructure method provides an attractive 
alternative to improve identification accuracy and efficiency by performing identification in 
smaller subsystems of manageable size.  The response of substructure is determined by the 
external excitation and interface motion, the latter including measurements of translational and 
rotational responses.  Nevertheless, measuring rotational response is usually expensive or 
difficult. In this study, a substructural damage identification strategy is proposed to avoid the 
rotational measurements, by using measured strains and translational accelerations on the 
interface. In a numerical example of a simply supported beam, the damage extents of three 
different substructures are evaluated with a modified genetic algorithm method. The results 
show that the proposed method performs well in identifying structural damage. 

 

 

1 INTRODUCTION 

Damage identification and health monitoring for structural systems has attracted increasing 
attention in the industry and research community. By analyzing the measurement signals, 
structural identification aims to determine physical parameters of a structure such as stiffness, 
mass or modal parameters such as natural frequency, mode shape and modal damping ratio. 
Then by comparing the identified parameters for the undamaged and damaged states, the 
location and even the extent of damage can be revealed. However, convergence becomes very 
difficult for a large system as it involves many degrees of freedom (DOFs) and unknown 
parameters. An alternative approach is to focus on a part of the structure of concern by the 
virtue of substructure approach. Various research works have been reported on substructural 
identification.  The earliest work on substructural identification was reported by Koh et al. 
(1999) who identified the stiffness and damping coefficients using the extended Kalman 
filter.  The substructural approach was found to perform much better than the complete 
structural identification in terms of accuracy and efficiency. Based on substructural approach, 
the natural frequencies and mode shapes are used as input patterns to the neural network for 
element-level identification in a truss and a frame structure (Yun et al. 2000). Based on a 
genetic algorithm (GA) approach, a time domain  substructure identification method was used to 
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identify stiffness of several structural systems including a long span truss structure (Koh et al. 
2003a). A frequency domain substructure method was established to identify parameters 
without the need of interface measurements by using different sets of measurements in the 
substructure (Koh et al. 2003b). Recently, a new substructural analysis method (Law et al. 2009) 
was proposed to simultaneously identify local damage of a substructure and its interface forces 
represented in terms of orthogonal functions with unknown coefficients. Thereafter, the 
damaged substructure is assessed  with the reconstructed interface forces through measurements 
in an adjacent healthy substructure (Law et al. 2010). These substructure methods show that the 
interface forces play an important role to determine substructural response. However, the 
interface forces are usually difficult to obtain especially for beam, plate and shell structures 
since measurement of rotational response is difficult in practice. To address this issue, a 
procedure is proposed to obtain rotational accelerations from measured strains and translational 
accelerations. Hence, the present identification is studied with interface rotational accelerations 
recovered from measured strains and translational (linear) accelerations. With a modified 
genetic algorithm approach based on a search space reduction, the damage can be qualified by 
comparing the identified substructural stiffness parameters for the undamaged and damaged 
states. The proposed strategy is demonstrated for a simply supported beam in successfully 
detecting the structural damage within three different substructures. 

2   DAMAGE IDENTIFICATION STRATEGY 

2.1 Substructure method 

Generally, a multi-DOF dynamic system can be described as 

[ ] ( ){ } [ ] ( ){ } [ ] ( ){ } ( ){ }M u t C u t K u t P t+ + =                                                                   (1) 

Where [ ]M , [ ]C and [ ]K are mass matrix, damping matrix and stiffness matrix of the structural 

system, respectively. ( ){ }u t , ( ){ }u t and ( ){ }u t represent the acceleration, velocity and 

displacement time signals when the structure is excited by dynamic force ( ){ }P t . 

The equation of motion for a substructure extracted from the whole system yields 
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where subscript ‘ r ’ denotes internal DOFs of the substructure while subscript ‘ j ’ represents 
the interface DOFs. The concept of “quasi-static displacement” vector (Koh et al, 2003b) is 
adopted to eliminate the requirement of displacement and velocity since acceleration 
measurement is preferred over displacement and velocity. Displacements for internal DOFs are 
expressed as the sum of quasi-static displacements ( )s

ru t and relative dynamic displacements *
ru , 

i.e. 

( ) ( ) ( )*s
r r ru t u t u t= +                                                                                                          (3) 

Since damping force is usually small compared to inertia force in civil engineering structures, 
the velocity dependent part in the interface force is assumed to be negligible. Thus Eq. (2) can 
be written as 
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Where [ ] [ ] 1
rr rjr K K−  = −   is called the influence coefficient matrix relating internal DOFs to 

interface DOFs under the quasi-static condition.  

2.2 Rotational measurement recovery method 

Within an element, the displacement u  can be divided into deformation d  and rigid-body 
motion r  as follows 

u d r= +                                                                                                                           (5) 

The rigid-body motion can be written as 

r αα= Φ                                                                                                                            (6) 

where αΦ and α are the elemental rigid-body modes and associated rigid body motion 
amplitude. Within an element, the displacement-strain relation is 

s Su=                                                                                                                               (7) 

Since the rigid body motion does not induce any strain, substituting Eq.(5) into Eq.(7) 

( )s Su S d r Sd= = + =                                                                                                      (8) 

Therefore, the deformation can be obtained by taking pseudo inverse operation due to the rank 
deficiency of matrix S , i.e. 

( ) 1T T
sd s S S S s

−
= Φ =                                                                                                       (9) 

Hence, the displacement within an element can be expressed as 

su s αα= Φ +Φ                                                                                                                 (10) 

For a beam, plate or shell element, the displacement u involves translational wu and rotational 
motion uθ , and rearranging Eq.(10) gives  
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With the measured translational motion and strain, the rotational displacement and rigid body 
motion amplitude can be obtained by solving Eq. (11), as follows. 
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Differentiating Eq. (12) twice with respect to time, rotational acceleration can be obtained by 
measured strain and translational acceleration 
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The translational acceleration wu  can be measured directly by using accelerometers. 
Nevertheless, strain signal with noise needs to be differentiated first, which will inevitably 
induce some errors.  To reduce such errors, Savitzky-Golay differentiation algorithm is adopted 
in view of its good performance (Luo et al, 2005).  It is noted that similar idea has been reported 
by Reich et al. (2001) with displacement measurement, although which is not readily measured 
in practice. 
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2.3 Search algorithm 

Genetic algorithms (GA) are developed based on Darwin’s theory of natural selection and 
survival of the fittest. In the past decades, GA has been widely studied and applied in many 
fields in engineering and science. In many complex problems, GA outperforms other traditional 
methods since most of traditional methods require a good initial guess, are sensitive to noise and 
often converge to local optima.  An improved GA method based on a search space reduction 
method (SSRM) was proposed to increase the accuracy and reliability of identification by 
reducing the search space (Perry et al. 2006a). The method was shown to achieve significant 
improvement in identification accuracy as compared to a standard GA, by narrowing the search 
space adaptively based on the statistics of results obtained. The proposed strategy uses the 
improved GA method as the search engine to minimize the difference between the simulated 
and measured internal acceleration in the substructure. 

3 NUMERICAL INVESTIGATION AND RESULTS 

To assess the performance of the proposed strategy, numerical simulation is conducted on a 
simply supported beam with known structural parameters under intact and damaged states. The 
dimension of simply supported beam is 960 mm long, 50 mm wide and 3 mm high. It is 
modeled by 16 identical beam elements as shown in Figure 1. There are two DOFs (translation 
and rotation) at each intermediate node, while only rotation is considered at the two supporting 
nodes. Young’s Modulus and density of the beam are 2.1×1011N/m2 and 7862 Kg/m3, 
respectively. 

60X16=960

50

A simply supported beam (Unit: mm)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Elastic modulus:  E=2.1×1011 N/m2

Density:  ρ=7862 kg/m3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3

Figure 1. Simply supported beam model 
Damage in the simply supported beam is simulated by reducing the beam width as indicated in 
Figure 2, such that the effective beam width in element 6 and 10 is reduced from 50 mm to 24 
mm resulting 52% reduction of flexural stiffness. A random excitation acts at node 13. Damping 
effect is taken into account with Rayleigh damping scheme by assuming 5% critical damping 
for the first two modes. Simulation of the structure response to a given excitation is carried out 
by Newmark’s constant acceleration method for 0.2 s. The sampling rate is considered to be 
10,000 samples/s. 

60×16=960

50

3

Beam with two damages at elements 6 and 10 (Unit: mm)
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Figure 2. Damage scenarios and sensors placements 

Three different substructures are investigated, denoted as S1, S2 and S3 shown in Figure 3. To 
recover the interface rotations of these substructures, the strain responses are assumed to be 
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measured in the 5th, 8th and 11th elements. The strain measurements in elements 5 and 8 are 
used to recover interface rotation accelerations for S1, element 8s and 11 for S2, and element 5 
and 11 for S3. Translational acceleration responses are assumed to be available at nodes 5-12.  
To account for the effects of noise, the simulated strain and acceleration responses are assumed 
to be contaminated with zero-mean Gaussian white noise.  Three different noise levels are 
considered: 2%, 5% and 10%.  

S1

S2

S3

S1

S2

S3

Accelerometer
Strain gauge

Figure 3. Three different substructures 

In addition to unknown flexural stiffness values, damping parameters α  and β  are treated as 
unknown resulting in 6, 6 and 9 unknown parameters, respectively, for S1, S2 and S3. The 
fitness function needed in GA is defined as 
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where subscripts m  and e  denote measured and estimated quantities, respectively; L  is the 
number of time steps and M  is the number of measurement sensors used. With the proposed 
damage identification strategy, not only the measured internal translational accelerations but 
also some recovered internal rotational accelerations are taken into account in the fitness 
function. The search limit is taken as 0.5-2.0 times the exact value for each unknown parameter.  

To quantify the damage, measurements for the undamaged and damaged states are required.  
With the measured strain and translational acceleration respectively for the undamaged and 
damaged states, the rotational accelerations at the interface are respectively recovered for each 
state. Then the flexural stiffness for the undamaged and damaged substructure is respectively 
identified by using an improved GA method based on SSRM. The extent of the damage in the 
beam is calculated as the reduction of flexural stiffness relative to the undamaged value, i.e. the 
damage index of element i is 

_ _

_

100%i u i d
i

i u

EI EI
D

EI
−

= ×                                                                                                (15) 

where _i uEI and _i dEI are the flexural stiffness values for the undamaged and damaged states.  For 
the two damaged elements in the numerical example,  the _i uEI and _i dEI  values are 23.625

2N m⋅  and 11.34 2N m⋅ , respectively. Therefore, the damage index is 52% in elements 6 and 10.  

In Figures 4.a-c, the exact as well as the identified damage indices for each element in S1, S2 
and S3 under different noise level are plotted for comparison. In addition, the mean and 
maximum of identification errors for undamaged and damaged states under different noise level 
are listed in Table 1. 
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Figure 4.a-b. The exact and identified damage indices in S1 and S2 

 

 
Figure 4.c. The exact and identified damage indices in S3 

 
Table 1. The identification error for undamaged and damaged beam 

State Noise 
level 

S1 S2 S3 
Mean error 
(%) 

Max error 
(%) 

Mean error 
(%) 

Max error 
 (%) 

Mean error 
(%) 

Max error 
 (%) 

Undamaged 

2%  2.70 4.34 2.33 4.08 1.61 3.07 

5%  3.43 5.10 4.42 7.81 4.34 8.91 

10% 7.50 12.59 8.45 12.65 5.46 13.31 

Damaged 

2%  1.85 2.65 2.79 4.00 2.18 3.87 

5%  3.12 5.10 3.29 5.89 2.82 6.16 

10% 6.68 10.53 7.66 13.19 4.96 11.45 
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From the identified results in Figures 4.a-c, the proposed method gives fairly accurate 
identification in terms of the location and extent of damage under different noise levels. For the 
two damaged elements, the damage indices of element 6 in S1, element 10 in S2 are identified 
as 49.46% and 49.26%, which just deviate 4.88% and 5.27% from the exact value 52% in the 
worst case. It indicates that the severity of damage in damaged elements can be very accurately 
identified with proposed strategy. For these undamaged elements, when measurements are 
contaminated by 10% noise, the maximum identified false damage is 10.84%, which is 
acceptable for practical application.  The identification errors summarized in Table 1 presents 
that the flexural stiffness of these three substructure in this simply supported beam can be 
reasonably evaluated even the are polluted by 10% noise. 

4 CONCLUSION 

A damage identification strategy is proposed to avoid rotational measurements, by the use of the 
measured strains and translational accelerations on the interface. The substructure approach is 
adopted in this strategy to keep the identification system size manageable. The interface 
rotational accelerations are recovered from measurements of strains and translational 
accelerations. With the proposed strategy, the recovered rotations include not only the interface 
rotations but also some internal rotations. The recovered interface rotations enable the 
substructure forward analysis while the identified accuracy is improved by including some of 
the recovered internal rotations in the fitness function. Reasonably accurate identification results 
in the numerical study show that the proposed strategy performs well in identifying  damage 
through the reduction in flexural stiffness values. 
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