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ABSTRACT: A research program was conducted to investigate the notion that the size of 
concrete thrust anchor blocks for cross-country hydrocarbon pipelines, designed as per current 
industrial standards, can be reduced substantially. Field monitoring of an in-service large 
diameter hydrocarbon pipeline and an anchor block at a remote pig launching/receiving station 
was carried out to investigate this aspect. Crude oil temperature and pressure, stress, and strain 
in the pipeline and movement of the anchor block were monitored using about 30 sensors 
installed at the site for a period of three months under various operating conditions of the 
pipeline. Continuous crude oil flows through the pipeline interjected by two events involving 
shutdown and restarting the flow showing very small movements in the concrete thrust anchor 
block. The stress and strains in the pipelines gave an insight into the performance of the pipe 
anchor block system. Analysis of the data obtained from field monitoring of the pipe anchor 
block system indicated that size of the anchor blocks could be decreased. 

1 INTRODUCTION  

Large diameter buried pipelines are used extensively in Saudi Arabia for cross-country 
transportation of hydrocarbons in fluid and gaseous states. These pipelines carry hydrocarbons 
under pressure and at elevated temperatures. Passive earth resistance and frictional forces from 
soil pipeline interaction restrain the straight portions of the buried pipeline resulting in the 
generation of stresses due to pressure and thermal differential. These stresses are catered for in 
the design, and the thickness of the pipeline depends on limiting these stresses to below the 
allowable stresses (Abduljauwad et al., 2006 and ASME B31.4, 1998). 

The buried cross-country pipelines emerges from the ground at intermediate locations along 
their routes, such as pumping stations, gas-oil separation facilities, pig launching and receiving 
stations and at the end near refineries. For the segment of pipeline in the transition zone, at the 
point of its egress from a buried state near above ground facilities, vertical bends are provided 
and the state of stress and the restraint condition changes and large harmful movements in the 
pipeline can take place in this zone. The movement in the pipelines at these locations is 
precluded by embedding them in concrete anchor blocks (Peng 1978 and ADP-L-044, 1986). 
These anchor blocks are designed to withstand the full thrust and pull forces due to thermal 
expansion and contraction and internal fluid pressure. The concrete anchor blocks are designed 
as per current industrial standards (SAES L-440, 2005 and SAES L-051, 1998). The design 
equations postulated in these standards for computing the load resisting capacity of these anchor 
blocks is based on conservative lateral earth resisting theories and several simplified 
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approximations. The size of these concrete anchor blocks needed to preclude movement are 
enormous, and in some cases several hundred cubic meters of concrete is required in remote 
desert locations for construction of these anchor blocks, Figure 1. It is suggested by field 
engineers that the use of current design equations results in an uneconomical design and very 
large sized blocks. This opinion is enhanced by the fact that the anchor blocks designed in the 
early 1980s were smaller in size for the same diameter pipelines. This paper presents the results 
of field monitoring of an in-service anchor block and pipelines. The stresses and strains on the 
buried and exposed pipeline, and the movement of the anchor block under different operating 
conditions of the pipeline was investigated.  

2 ANCHOR BLOCK PIPE INSTRUMENTATION AND MONITORING SCHEME 

In a buried cross-country pipeline, longitudinal movements due to thermal gradient from hot 
crude oil and the Poisson’s effect from internal pressure are restrained by soil friction. In the 
transition zone from buried to exposed state, the frictional force reduces from the point of 
virtual anchorage to zero at point of emergence from the ground. In this zone, the pipeline 
undergoes significant movements and has to be restrained by providing anchor blocks. The 
objective of the monitoring program was to measure these movements and stresses possible 
reduction of anchor block size. The sensors for monitoring of anchor block and pipeline were 
selected to measure movements in the block, strain in the buried and exposed portion of the 
pipeline, temperature in the pipeline and environment, and internal pressure in the pipeline. 

The pipeline and the thrust anchor block is located in the Abqaiq desert at a pig launching 
station about 50 km from Dhahran. This site was selected because the pipeline could be opened 
and closed several times, as it is a bypass line which operates when other parallel lines are not in 
service due to maintenance. The 116.8 cm (46“) diameter pipeline, Figure 2, carries hot crude 
oil. The concrete thrust anchor block which was constructed in 1980 is 6 m long, 3 m wide and 
3.6 m in height.  

                  

Figure 1. Concrete anchor block under construction.             Figure 2. Instrumented 46” dia oil pipeline.  

Thirty sensors were installed on the pipeline and anchor block. The sensors installed and their 
purpose are as follows: 

• Five linear motion transducers (LMTs) for measuring the horizontal movements in the 
thrust anchor block.  

• Three LVDTs (Linear Voltage Displacement Transducer) for measuring any vertical 
motion or rotation in the thrust anchor block.  

• Four strain gauges and two stress gauges in pit #1 (for buried pipeline at 20 m from the 
anchor block) in a longitudinal direction.  
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• Four strain gauges, two in a longitudinal direction and two in a transverse direction in 
pit #2 (for buried pipeline near the thrust block at 9 m from the block). 

• Two stress gauges, one in a longitudinal and one in a transverse direction in pit #2.  
• Three strain gauges and one stress gauge on the exposed pipeline. 
• Two thermocouples for measuring temperature of the crude in the exposed pipeline.  
• One thermocouple in the buried pipeline at pit #2.  
• One temperature sensor for measuring environmental (ambient) temperature.  
• One pressure sensor for measuring oil pressure in the pipeline. 

For monitoring of buried pipelines, two pits located at 9 m and 20 m from the anchor block on 
the downstream side were excavated, and sensors were attached on the exposed surface of the 
pipeline, Figure 3. These pits were then backfilled with soil. For monitoring of anchor block, it 
was exposed partially by excavation of sand on one side and displacement transducers were 
fixed on it to record the horizontal and vertical movement of the block, Figure 4.  

                  

Figure 3. Buried pipeline exposed for fixing sensors.          Figure 4. Concrete anchor block with LMTs.  

The pipeline was operational when the sensors were attached to it. Sensors in the exposed 
portion of the pipeline are shown in Figure 5. The sensors were connected to a data logger, 
Figure 6, and the data was continuously monitored and recorded at 10 minute intervals. The data 
logger was housed in a mobile lab at the site and the data was transmitted to a remote computer 
at 4-hour intervals through a mobile phone connected to the data logger.  

               

Figure 5. Strain gauges and thermocouple on pipeline.     Figure 6. Data logger in the mobile laboratory.  

The stresses and strains in the pipeline, movements in the anchor block and fluid and ambient 
temperature was monitored for a period of three months starting from July 2006 and ending in 
September 2006. The pipeline was operational during this period with the exception of two 
planned interruptions. The oil flow valve was closed two times, the first closure took place  
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Figure 12.  Time series plots for strain in buried pipeline in pit #2. 

3.6 Stress Response in the Exposed Pipeline  

Figure 13 shows the variation of pipe stresses measured in the exposed and buried oil pipeline. 
The stresses for the exposed pipe surface have been observed to lie in the range of -400 Mpa to 
+100 MPa. The maximum stress in exposed pipeline is 400 MPa, which is about 96% of SMYS 
(Specified Minimum Yield Strength). This is a high value as stresses in the pipe should not 
exceed 90% of SMYS. The high stresses measured in the exposed pipeline could be due to the 
restraint provided to the movement of the pipeline, which was visually observed at the site. This 
restraint probably results in high compressive stresses.  

3.7 Stress Response in the Buried Pipeline  

The longitudinal and transverse stress on the buried pipeline in pit #2 is shown in Figure 14. The 
longitudinal stresses on the pipeline reaches to a maximum value of 50 MPa (tensile) and a 
minimum value of -200 MPa. The transverse stress in the pipeline is compressive with values 
varying between 0 MPa and 200 MPa. There is no significant effect on the stress regime during 
the shutdown period. The maximum observed longitudinal and transverse stress is 0.54 SMYS, 
which is lower than the allowable stress of 0.72 SMYS. The longitudinal stresses measured at 
two locations in pit #1 (Figure not shown) vary between +75 MPa (tensile) to -350 MPa 
(compressive). The measured stress data points also show compressive stresses ranging from -
375 MPa to -400 MPa. The maximum observed stresses in buried pipeline in pit #1 is about 
0.85 SMYS, which is greater than the allowable stress of 0.72 SMYS, but less than 0.9 SMYS. 

3.8 Movements in the Anchor Block  

Figure 15 shows measured vertical displacement of the thrust anchor block. During the second 
week of July, there was a huge sand storm, which disturbed the position of the sensors resulting 
in high displacement, but later the sensors showed oscillations around the same value. The 
vertical displacement oscillated within 0.5 mm for most of the period with a maximum 
measured absolute value of 3 mm. 

Figure 16 shows the horizontal movement of the anchor block. The closing and opening event 
of the flow valves did not have any effect on the horizontal displacement of the anchor block. 
The average horizontal displacement was found to lie in the range of 0.5 mm to 1.5 mm. It was 
observed that the horizontal or vertical movement in the anchor block due to pressure and 
temperature changes in the pipeline during operation and during the events when flow was 
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Figure 16.  Horizontal displacement of thrust anchor block. 

4 CONCLUDING REMARKS 

The field monitoring carried out on an in-service anchor block demonstrated that the anchor 
block did not undergo any significant upward, downward or rotational movement due to 
temperature and pressure induced stresses during the events of crude oil flow stoppage and 
resumption in the pipeline. No significant movement in the anchor block took place when the 
pipeline was in service. The small movements observed, however, releases the stresses in the 
pipeline near the anchor block. High stresses were measured in the exposed pipeline, which can 
be attributed to observed restraint to free movement of the pipeline under thermal changes.   
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