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ABSTRACT: In modern structural monitoring geodetic sensors (total stations, GNSS sensors, 

etc.) are used simultaneously with other sensors like level sensors or fiber optic sensors. 

Traditionally, the deformation analysis is based on network adjustment and focuses on the 

geometrical changes of an object neglecting the causes for the deformations and the dynamics of 

the process. However, for a detailed understanding of the structural behavior the data from all 

sensors as well as a numerical model of the structure have to be incorporated in the analysis. In 

this paper an integrated analysis method (IAM) is presented which allows the use of different 

types of data in combination with a finite element model (FEM). 

 

1 INTRODUCTION 

Traditionally, geodetic monitoring of structures is based on point measurements on the surface 

of an object. Therefore, prisms or GNSS antennas are mounted on the structure. The 3D 

movements of these points can be observed continuously or epoch-wise with robotic total 

stations or GNSS receivers. Alternatively the surface of the object can be monitored without 

attaching targets with laser scanners or by photogrammetric techniques. Standard method in 

geodetic monitoring is to establish a control network where all network points (stable reference 

points and moveable object points) are connected (Cooper, 1987). A typical setup for the 

geodetic monitoring of a civil structure is shown in fig. 1. 

 

Figure 1. Geodetic monitoring network for a water dam (after Welsch et al., 2000, p. 65). 



 

 

  

In recent years attempts were made to extend the geodetic measurement domain by including 

sensors that can also be embedded within structures. An example are fiber optic sensors (FOS) 

which can be placed in many civil structures like concrete bridges or earth filled dams. These 

sensors enable deformation measurements in areas which are not accessible by conventional 

geodetic techniques. To date we have experiences in the combined use of geodetic and fiber 

optic sensors in bridge monitoring (Lienhart and Brunner, 2003), landslide monitoring (Wöllner 

et al., 2011) and dam monitoring (Lienhart, 2013). In this paper we demonstrate that standard 

analysis techniques fail to analyze the combined data in an integrated manner and propose an 

integrated analysis method (IAM) which allows the use of different types of data in combination 

with a finite element model (FEM). 

2 CONVENTIONAL GEODETIC DEFORMATION MONITORING 

Geodetic measurements are usually carried out in an over-determined manner, e.g. monitoring 

points are observed from two or more reference stations. Thus the least squares method can be 

applied to estimate the best result in terms of minimum sum of squares of the residuals. The 

well-known solution (see e.g. Niemeier, 2001) to this minimization problem is 

T 1 1 1 1 1= T Tˆ ( )    yy yy yyξ A Σ A A Σ y N A Σ y  (1) 

with 

ξ̂  estimated parameters 

y observations 

Σyy variance co-variance matrix of the observations ( 2
0= yyyyΣ V ) 

A design matrix 

N normal equation matrix 

The design matrix A is the crucial element which establishes the connection between 

observations and parameters. It contains the partial derivatives of the observations with respect 

to the parameters: 

The estimated parameters (typically coordinates) and their variance co-variance matrix (VCM) 

are the core elements of the deformation analysis. If the geometry of an object is measured at 

two points in time (i and j) then deformation can be defined as difference between the estimated 

parameters of the individual measurement epochs: 

ij j i
ˆ ˆ d ξ ξ  (2) 

In the congruency model (Pelzer, 1971) it is verified by a statistical test if the calculated 

deformations are significant. If the null hypothesis of no significant deformation is rejected 

moved object points are separated from stable points. Fig. 2 summarizes this standard 

procedure. 



 

 

  

 

Figure 2. Deformation analysis with the congruency model. 

 

The congruency model is a proven tool for the analysis of conventional geodetic monitoring 

data where all individual points are part of the geodetic network. However, this method fails in 

case of external and internal measurements. In many applications it is not possible to perform 

connection measurements between internal and external sensors. Furthermore, connection 

measurements between different internal sensors are also difficult to achieve. Such a situation is 

visualized in fig. 3. In this case two points P1 and P2 on the object are monitored with total 

station measurements (direction (Hz) and distance (D) measurements). Additional strain 

measurements (ε) are taken with the internal sensors L1 and L2.  

 

 

Figure 3. Monitoring example with internal and external measurements. 

 

The linearized model for the least squares adjustment 

  y e A ξ  (3) 

to determine the point coordinates x and the length of the internal sensors l1 and l2 is given by  
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The normal equation system collapses due to the block structure of the design matrix 
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As a result the data is not analyzed in an integrated manner. In fact the different parameter types 

can be calculated independently due to the diagonal structure of the global normal equation 

matrix by solving the following equations 
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The information that all measurements are performed on the same object is lost in the standard 

deformation analysis method.  

3 INTEGRATED ANALYSIS 

For a better understanding of structural behavior the observed object has to be treated as 

dynamic system which converts acting forces into deformations. These deformations can be 

predicted with a numerical model if the acting forces fMEAS are measured and compared with 

actually measured deformations. One possibility of a numerical model with physically 

meaningful parameters is a finite element model (FEM) of the structure. An FEM calculation 

delivers nodal displacements u from which calculated deformations dFEM can be derived. In 

general the calculated deformations dFEM will differ from the measured deformations dMEAS. The 

significance of this difference δ has to be verified by a statistical test, see fig. 4. In order to 

perform this test, the variance co-variance matrix Σδδ has to be known. This matrix is the sum of 

the VCM of the measured deformations and the VCM of the predicted deformations. The VCM 

of the predicted deformations has to be derived from the VCM of the acting forces Σff by 

variance propagation through the model and does also include uncertainties of the FEM. 

 



 

 

  

 

Figure 4. Comparison of calculated and measured deformations. 

 

In case of significant differences an Integrated Analysis has to be performed. The Integrated 

Analysis can be based on adaptive Kalman-filtering (Heunecke, 1995) if continuous 

measurements are available or can be based on the Integrated Analysis Method (IAM) presented 

by Lienhart (2007) in case of a small number of measurement epochs. The basic idea in an IAM 

is to introduce the condition that the calculated deformations have to be identical with the 

measured deformations when the calibrated parameters of the numerical model are used. 

Brandes et al. (2012) formulate this condition explicitly and introduce Lagrangian multipliers. 

This condition can also be realized by pseudo-observations with assigned high weight (Jäger 

and Bertges, 2004).  

This method differentiates between a measurement and a system part and also uses the variance 

co-variance matrices (VCM) of the measurements. The measurement part consists of the 

measured deformations dMEAS which should be equivalent to the deformations calculated from 

the nodal displacements u. Generally, the unknown parameters of the FEM will cause a 

difference which can be used to estimate the parameter values p̂ . A Gauss Markov model can 

be introduced which uses the equivalence of the sum of the measured deformations dMEAS and 

the unknown residuals eMEAS to the deformations calculated from estimated nodal displacements 

û  (eq. 7). 

Measurement part 
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System part 
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f
ˆ f e f , ffΣ  (10) 

Eq. 8 forces the estimated nodal displacements û  to be identical with the calculated nodal 

displacements using the estimated physical parameters p̂  and the estimated forces f̂ . This 

equation is introduced as condition by assigning a large weight to it, meaning 

SYS Σ 0   (11) 

In the system part the material parameters (p) and forces (f) are included as pseudo observations 

(eq. 9 and 10). The parameters in the model are the nodal displacements u, the material 

parameters p and the acting forces f. These parameters are estimated by least squares 

adjustment. Measurement and system part can by identified in the design matrix which has the 

following structure  

 (12) 

where I is the identity matrix. The connection between the measurements and the calculated 

displacements is established by block a) of eq. 12. This block contains the partial derivatives Tdu 

of the deformations with respect to the nodal displacements. The connection between the 

displacements, the material parameters and the forces is established by block b) which contains 

the partial derivatives of the nodal displacements with respect to the parameters (Tup) and the 

forces (Tuf). The individual points of the FEM are linked together by the off diagonal elements 

of A. In case of monitoring data from external and internal sensors functional relations are 

established between previously unconnected sensors.  

4 EXAMPLE: MONITORING OF A MONOLITHIC BRIDGE 

The above presented IAM was applied to the monitoring data of a monolithic bridge. This 

bridge was monitored with 27 geodetic points, 2 borehole inclinometer tubes, 8 fiber optic 

sensors. Additionally the internal bridge temperature was measured with 12 temperature 

sensors.  

 



 

 

  

Figure 5. Calculated (initial FEM) and measured displacements. 

Fig. 5 displays the deformations of the bridge deck as response to the temperature differences 

between autumn and summer. The deformation calculated with the initial FEM show large 

differences to the measured deformations. These differences are significantly reduced after the 

IAM due to the calibration of the FEM parameters, see fig. 6. The full analysis of this data can 

be found in Lienhart (2007). 

 

 

Figure 6. Calculated (calibrated FEM) and measured displacements. 

 

5 CONCLUSIONS 

Conventional deformation analysis methods fail in case of internal and external monitoring data 

due to a collapse of the normal equation system. The data of each sensor type is analyzed 

independently and thus the global deformation behavior of the structure cannot be assessed. 

With the proposed IAM it is possible to connect spatially distributed measurements of different 

types. As an example the analysis of the monitoring of a monolithic bridge was discussed in this 

paper. The results of the calibrated FEM are in good agreement with the measured 

deformations. The presented method is generic and can be applied to inhomogeneous 

measurements of any structure.  
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