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ABSTRACT: A novel damage estimation method is proposed using a multi-objective 
optimization technique which simultaneously updates the damaged as well as undamaged 
structural model. Contemporary damage detection and estimation methods based on model 
updating typically require a prior updated baseline finite element model of the undamaged 
structure for subsequent updating of the damaged model. However, multi-objective optimization 
algorithms utilize both the undamaged and damaged structure models concurrently to improve 
the performance of the damage estimation procedure. An updated solution is selected which 
gives a trade-off between updating of both models using the concept of Pareto front. The 
technique was applied to a numerically simulated structure with damage, and natural 
frequencies and mode shape information was used for model updating. Different noise levels 
were added to account for the experimental errors. It was found that the proposed method gives 
more accurate damage location and estimation than traditional updating, and is less sensitive to 
experimental errors. 

 
 

1 INTRODUTION 

For the design and analysis of civil engineering systems, the finite element (FE) method is 
widely used. FE models of civil structures are usually based on idealized drawings/designs and 
estimates of material properties, structural geometry and boundary and connectivity conditions, 
which may not truly reflect the exact behavior of the as-built system. Significant differences in 
dynamic behavior of FE models and as-built systems have been noted by various researchers 
(Schulne et al. 2009, Brownjohn et al. 2001, Friswell & Mottershead 1995) and numerous 
studies focusing on damage detection and estimation have been carried out using vibration data 
(Perera et al. 2009, Hu et al. 2001, Huh et al. 2011, Hester & Gonzales 2012). These differences 
can be mainly attributed to simplification of a complex structure and uncertainties associated 
with assumptions of materials, geometry, and boundary and connectivity conditions (Moon & 
Aktan 2006). Dynamic model updating is a process of refining the mathematical model of an 
actual structure using dynamic measurements. 

This paper presents a novel damage estimation method which concurrently utilizes the 
experimental data of both undamaged and damaged structure in a multi-objective optimization 
(MOO) process. Contemporary damage detection and estimation methods which are based on 
model updating typically require an updated baseline FE model of the undamaged structure. The 



 

 

  

updated undamaged model is then compared with an updated damaged model for assessment of 
damage location and severity. There might be many errors associated with this two-stage 
approach, e.g. modeling errors, experimental errors, updating procedure errors or parametric 
errors. These errors may be aggregated in the subsequent model updating runs. 

To check the performance of the proposed approach, it is applied to a numerically simulated 
simply supported beam. Different noise levels are added to the identified mode shapes to assess 
the performance of the proposed procedure for accurate damage estimation in noisy conditions. 
A genetic algorithm (GA) has been used as the optimization tool in this paper as multi-objective 
GA is well implemented (Knowles et al. 2008). Compared to the single-objective optimization 
(SOO), which gives only one optimal solution, multi-objective formulation gives a set of 
alternative solutions. A desirable solution can then be selected based on acceptable trade-off 
between, in our case, the two objective functions related to the undamaged and damaged 
structure, respectively. 

The layout of the paper is as follows. MOO concepts are explained first. This is followed by 
model updating of a simulated beam using SOO and MOO under different noise levels. The 
results of damage estimation using SOO and MOO are then compared and conclusions drawn 
from the study are reported. 

2 MULTI-OBJECTIVE OPTIMISATION 

An optimal solution for a physical system modeled using one objective function can be found 
using SOO. However, when two or more objective functions are used concurrently, the task of 
finding one or more optimal solutions is referred to as MOO. Many real world optimization 
problems involve multiple objectives. The extremist principle which prioritizes one objective 
over the others may lead to erroneous results especially in cases where the rest of objectives are 
also important or interdependent. Selecting a solution which is optimal for only one objective 
may compromise the other objectives. Evolutionary algorithms are a popular approach to solve 
MOO problems using the concept of domination (Deb 2001). According to this concept, one 
solution dominates the other solution if the following two conditions are satisfied: 

1. The first solution is not worse than the second solution in all objectives, and 

2. The first solution is strictly better than the second solution in at least one objective. 

Violation of any of the above conditions indicates that the first solution does not dominate the 
second solution. It is intuitive that if any solution dominates the other solution, then it is also 
better in the context of MOO. The concept of domination is used to find ‘non-dominated’ 
solutions. When all pair-wise comparisons have been made for a given finite set of solutions, we 
expect to have a set comprising a number of solutions which do not dominate one another. An 
important property of this set is that each of its solutions dominates all other solutions outside of 
this set. In other words, the solutions in this set are better compared to the rest of the solutions. 
This leads to the definition of Pareto optimality which states that among all solutions, a non-
dominated set of solution are those which are not dominated by the rest of the solutions. This 
concept of Pareto optimality leads to a set of solutions known as the Pareto optimal set. A rank 
is assigned to all solutions within the set (Deb et al. 2002). A plot of objective function values 
corresponding to the Pareto optimal set gives the Pareto front. 

Evolutionary algorithms, such as GA, work concurrently on a population of genes and use 
genetic operators such as selection, crossover and mutation to obtain globally optimal solutions. 
This evolution mechanism helps to explore the trade-off between solutions with different blends 
and grades of objectives. Also, they do not require gradients of the objective function and their 



 

 

  

chance to reach the global optimal solution is increased. A detailed review of multi-objective 
techniques can be found in Coello & Lamont (2004). Many variants of MOO, based on the 
Pareto front approach and using multi-objective evolutionary algorithms (MOEAs), have been 
proposed. Non-dominated sorted genetic algorithm-II (NSGA-II) is one of the most popular and 
efficient MOEAs, and has been used in many studies in the last decade (Deb et al. 2002, Chan 
& Sudhoff 2010, Koppen & Yoshida 2007, Hui & Qingfu 2009). Therefore, NSGA-II has been 
adopted for this study to investigate its effectiveness for damage detection and estimation via 
dynamic model updating. The general steps involved in NSGA-II are as follows: 

1. Termination criteria based on the accuracy required and total number of generations are 
selected 

2. A random population of chromosomes (solutions) is initialized 

3. Values of objective functions for each of the chromosomes are obtained 

4. Different ranks are assigned to each of the solutions based on a non-dominated sorting 
algorithm to classify the population into fronts 

5. Off springs of the parent population are created by randomly arranging a duplicate copy 
of the parent solutions 

6. A tournament selection of best solutions obtained from the previous step is performed 

7. Cross over with assumed probability is performed on the parent solutions to form new 
off springs 

8. The new off springs are mutated with a mutation probability 

9. A non-dominated sorting is performed on the new off springs and once again all the 
solutions are classified into fronts using a non-dominated sorting algorithm 

10. If the termination criteria are achieved, stop, or else go to step 6. 

After some trial and error, the following parameters of NSGA-II have been used in the present 
research: 

Population size = 500 

Minimum value of objective function = 1×10-10 

Maximum number of generations = 200 

Cross over probability = 0.8 

Mutation probability = linearly decreases from 0.2 to 0 when the maximum number of 
generations is reached 

Pareto fraction (fraction of solutions to be kept in the first front) = 0.35. 

3 DAMAGE ESTIMATION USING MULTI-OBJECTIVE OPTIMIZATION 

In the previous decade, numerous studies have been performed to establish the health of the 
structure under in-situ conditions (Hu et al. 2001, Begambre & Laier 2009). In the context of 
dynamic FE model updating, assessment of physical characteristics of the structure is done by 
comparing basic modal properties (such as natural frequencies and mode shapes) with their FE 
model counterparts. In a traditional sequential model updating approach, individual model 
updating of the initial FE model is carried out using modal data related to undamaged structure. 
Likewise, the updated healthy structure FE model is again updated by considering modal data 



 

 

  

related to the damaged structure. A comparison is then made between the two individually and 
sequentially updated FE models to estimate damage. Different errors may propagate during 
individual model updating runs, such as modeling errors, experimental errors, updating 
procedure errors or parametric errors. In the proposed approach, the initial FE model of the 
structure is updated simultaneously by considering the modal data related to both undamaged 
and damaged structure in a multi-objective context. Two consecutively updated models thus 
obtained (undamaged and damaged FE model) are then compared for damage severity 
estimation. 

A numerically simulated simply supported beam has been studied to demonstrate the 
effectiveness of the damage estimation method. The simulated beam has a total length of 5 m 
and was discretized into 10 elements as shown in Figure 1. The beam has a total depth of 0.2 m 
and width of 0.25 m. The density of the beam was assumed as 2500 kg/m3 and modulus of 
elasticity as 3.2×104 MPa. The area of the cross section was 0.05 m2 and moment of inertia 
(MOI) was 1.66×10-4 m4. A preliminary model of the beam was assumed as the one which has 
the aforementioned section properties and is referred to as the initial FE model (Figure 1a). In 
the simulated ‘experimental’ model for the undamaged structure, the MOI of all the elements of 
the initial FE model has been reduced by 10% as shown in Figure 1b. A 10% reduction was 
assumed in the undamaged model as initial FE models are usually developed based on design 
drawings and assumptions and may not accurately represent the undamaged in-situ structure. 
For the simulated ‘experimental’ damaged structure, MOI of element No. 5 has been further 
reduced from 10% to 60% (Figure 1c). This methodology is advantageous to check the 
effectiveness of the proposed approach in updating both undamaged and damaged models 
simultaneously. Modal analysis was carried out on the undamaged and damaged beam to obtain 
the first five natural frequencies and mode shapes. The values of the first five natural 
frequencies for the initial FE model, undamaged model and damaged model are shown in Table 
1. It can be seen that the difference between all the frequencies of the initial FE model and the 
undamaged beam is 5.4%, and for the damaged beam it varies between 6.8% and 17.5%. Only 
vertical degrees of freedoms are considered in this study as these are the only typically 
measured in actual tests. 

        
Figure 1. Simulated simply supported beam: (a) 
initial FE model, (b) undamaged model with 10% 
reduction in MOI of all elements, and (c) damaged 
model with 60% reduction in MOI of element No. 
5 and 10% in all other elements. 

Figure 2. Typical Pareto front between two 
objective functions related to undamaged and 
damaged beam. 



 

 

  

 

Table 1. Frequencies of the simulated beam before model updating. 

Mode 
No. 

Frequencies of 
initial FE model 
(Hz) 

Frequencies 
of undamaged 
beam (Hz) 

Frequencies of 
damaged 
beam (Hz) 

Difference in 
frequencies 
between initial 
FE and 
undamaged 
model (%) 

Difference in 
frequencies 
between 
initial FE and 
damaged 
model (%) 

1 12.98 12.31 11.04 -5.41 -17.51 

2 51.91 49.24 48.60 -5.41 -6.81 

3 116.73 110.74 103.13 -5.41 -13.19 

4 207.14 196.51 189.42 -5.41 -9.36 

5 322.11 305.58 291.86 -5.41 -10.37 

It can be assumed that modal frequencies are fairly accurately determined in modal testing and 
experimental errors are usually present only in mode shapes (Udwadia 2005). Consequently, 
some random noise has been added to each of the k-th component of the j-th modal amplitude 
and the ‘measured’ components of the mode shapes are given as: 

 , 1jk noise jk noise       (1) 

where ɛ is a random number between -1 and +1 and αnoise is the amount of noise. Two different 
noise levels were considered, i.e. 5% and 20% (Perera & Torres 2006), for checking the 
effectiveness of the proposed approach. According to the usual procedure performed in actual 
tests, five data sets were considered for each noise level representing what would be repeated 
experiments. The updating parameter values reported later are the average of the five sets and 
their standard deviations. 

A combined objective function related to the frequencies and model assurance criterion (MAC) 
(Möller & Friberg 1998) is used in this study. The relative error between the experimental and 
analytical frequencies is: 
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where ω represents modal frequency, subscripts a and e refer to the analytical and experimental 
values, respectively, and n is the total number of modes to be updated. The second objective 
function is related to the difference in mode shapes and can be defined in terms of MAC as: 

 2

2
1

1
n

i i
i

MAC MAC


     (3) 

Two separate objective functions were defined for undamaged undam and damaged structure 
dam as follows: 

1, 2,undam undam undam        (4) 

1, 2,dam dam dam         (5) 



 

 

  

where weighting factors α and β were both taken as 1. 

Model updating of the undamaged and damaged beam is performed in this section. The first five 
frequencies and mode shapes were selected to have a similar number of unknowns (MOI for 
each FE) as the number of knowns (frequencies and MACs). This was chosen because the 
performance of many minimum searching algorithms deteriorates when the number of 
unknowns to the number of unknowns increases. Damage detection and localization capabilities 
of the algorithm were checked by including all the parameters related to undamaged and 
damaged beam in the process. Both SOO and MOO were performed to obtain the updated 
parameters to compare their performance. 

Following the conventional approach, an updated undamaged model was obtained using the 
objective function of Equation (4) and SOO. A total of 10 parameters were updated with 10 
knowns, i.e. five frequencies and five MACs of the undamaged beam. After obtaining the 
updated undamaged model, the next step is to update the damaged model using the objective 
function of Equation (5). As the damage location was assumed to be unknown, all ten elements 
were updated in this case with 10 knowns in this case, i.e. five frequencies and five MACs of 
the damaged beam. 

For MOO, a total of 20 parameters need to be concurrently updated, in which case 10 
parameters belong to the undamaged beam and 10 parameters belongs to the damaged beam. 
Both Equation (4) and Equation (5) were concurrently used as two separate objective functions. 
The total number of knowns (frequencies and MACs) is 20 in this case and the number of 
unknowns (individual element MOIs) is 20. In each iteration, the updated FE model of the 
undamaged structure is further used for updating of the damaged structure. A typical Pareto 
front is shown in Figure 2 which considers both the objective functions equally important and 
identifies the non-dominated solutions. The front consists of those Pareto solutions for which 
there does not exist any solution which is better in both the objective functions simultaneously. 
Thus, the trade-off between both the objective functions can be explicitly decided by observing 
the Pareto front. In this research, the optimum solution is selected from the Pareto optimal set 
which minimizes the following expression: 

2 2
undam damf      (6) 

For assessment of damage severity, the updated undamaged model is compared with the 
updated damaged model for both SOO and MOO. Damage location and severity is estimated by 
subtracting the updated MOI ratios of the damaged model from that of the undamaged model. 
The actual damage index has been calculated as 0.5 for element No.5 in this study (as shown in 
Figure 1), which indicates a reduction of MOI of element No.5 from 0.9 to 0.4. The damage 
severity is estimated for all the elements and shown in Figure 3 along with actual damage for 
two noise levels considered, i.e. 5% and 20%. 

From the results, it can be seen that damage estimation from MOO is more accurate than from 
SOO. For example, the damage index for element No. 5 (actual damage index = 0.5) is found to 
be 0.530 and 0.654 for the single objective case, whereas damage index for the same element is 
found to be 0.472 and 0.531 for the multi-objective case with 5% and 20% noise, respectively. 
For other elements, Figure 5 also indicates that MOI estimation was also markedly improved 
with the use of MOO. It can also be noticed that increase in the noise level also affects the 
damage severity estimates, i.e., with the increase in noise levels, the damage was also 
misestimated to a higher degree.  

 



 

 

  

(a)  

(b)  

Figure 3. Damage severity estimation for element No. 5 : (a) 5% noise level, and (b) 20% noise level. 

4 CONCLUSIONS 

A method has been presented in this paper for damage estimation using modal data. 
Contemporary approaches to damage estimation compare model updating results for the 
undamaged and damaged structure acquired separately. The associated errors may propagate 
when the baseline undamaged model is subsequently used for damage estimation. A damage 
detection and estimation method which simultaneously updates the undamaged as well as the 
damaged structure model in a MOO process is presented herein. A numerically simulated 
simply supported beam has been used as an example problem and two noise levels of 5% and 
20% have been added to the identified mode shapes to assess the performance of the proposed 
procedure. A better estimation of damage was obtained with this new technique as it effectively 
uses the experimental data of both the undamaged and damaged structure. It has been found that 
better results are obtained due to an increase in the available information for the undamaged and 
damaged states. Moreover this technique has proved to be less sensitive to experimental errors. 
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