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ABSTRACT: A non-parametric data interpretation approach is explored in conjunction with 
optical fiber sensors for long-term Structural Health Monitoring. As a result, an innovative 
hybrid damage detection algorithm is investigated based on strain data captured by Fiber Bragg 
Grating (FBG) sensors from 4-span bridge model. Three common and critical damage 
conditions were simulated on the representative bridge model equipped with FBG sensors. 
Acquired strain data were processed by both Moving Principal Component Analysis (MPCA) 
and the new developed algorithm so-called Moving Principal Component-Support Vector 
Machine (MPCA-SVM). The efficiency of the FBG sensors and the new algorithm for detecting 
and localizing damage as well as time to detection are explored. Based on the findings presented 
in this paper, the MPCA-SVM is seen to outperform MPCA in terms of time to detection. In 
fact, MPCA-SVM not only has powerful detectability but also significantly reduces the delay in 
damage detection associated with MPCA.  

1 GENERAL INSTRUCTIONS 

Fault detection techniques can be broadly classified into two main categories (Worden 1997). 
Model-based techniques are based on establishing a mathematical model of structure, in most 
cases finite element model, and comparing the response between model and measured data from 
a real structure. Dependency on mathematical model is the main drawback of these techniques. 
The alternative approach is data-driven methods, which are generally based on pattern 
recognition techniques or more broadly machine learning methods (Laory 2011, Lanata 2005). 
Moving principal component analysis (MPCA) is a fully data-driven based damage detection 
algorithm, which is proven to be very powerful in terms of damage detectability (Laory 2011). 
However, a critical disadvantage associated with this algorithm is the delay in detecting 
damage, which in some cases may restrict the application of MPCA.  In other words, although 
MPCA algorithm has been confirmed as one the most powerful algorithm in terms of 
detectability, it demonstrates significant delayed in detection of the damage. This delay can be 
life-threatening when dealing with critical structures, including bridges, nuclear plants etc.  

The objective of this study is to develop an innovative damage detection algorithm in such a 
way that it can address the delay issue coupled with MPCA algorithm. In response to this need 
for decreasing the time to detection criteria, a novel algorithm is designed and proposed by 
taking advantages of support vector machine (SVM) technique. The new algorithm is developed 



 

 

  

by integrating MPCA and SVM in a way that the delay in damage detection is significantly 
reduced. The efficiency of this hybrid damage detection algorithm is tested by simulating three 
common and critical damage scenarios on a 4-span bridge model structure, which 
phenomenologically represents a multi-span highway bridge. While this model structure is 
instrumented with a variety of sensors, the focus will be Fiber Bragg Grating (FBG) sensors that 
are employed for measuring strain from both the baseline and the damaged structure. 
Commonly observed bridge damage scenarios will be artificially induced on the bridge to 
evaluate the detectability and time to detection of MPCA-SVM fault detection algorithm.  

The layout of this paper is as follows: Section 2 is devoted to a brief introduction to Fiber Bragg 
Grating (FBG) sensors. Section 3 is concerned with mathematical background as well 
as different steps involve in MPCA and also MPCA-SVM algorithm. Experimental setup 
together with structural configuration, location of sensors and implemented damage scenarios 
are explained in Section 4. Section 5 is dedicated to interpretation and also comparison of the 
output results from MPCA and MPCA-SVM. To end with, the paper concludes with some 
discussion on the merits of the new algorithm, MPCA-SVM. 

2 FIBER OPTIC SENSORS (FOS) 

2.1 Fiber Bragg Grating (FBG) 

There has been a dramatic increase in the FOS implementations in the context of SHM due to 
advantages brought by these types of sensors,  including spatial resolution, durability, stability 
and immunity to electrical noise (Morey et al.1989). FBG sensors, which are point types of 
sensors, are among the widely used FOS. The basic working principles of FOS and FBG sensors 
are reflection and filtration of different wavelengths of light (Morey et al.1989). Beside the FBG 
sensors, Brillouin Optical Time Domain Analysis (BOTDA) and Brillouin Optical Time 
Domain Reflectometry (BOTDR) two of the widely used distributed types of FOS. For FBG 
sensors, grating property enables the optical fiber to transmit the entire wavelength except the 
particular reflected wavelength entitled as grating process. A brief introduction to theory of the 
optical fiber is presented in the following section. 

2.1.1 Theory behind the FBG sensors 

FBG system consists of an article interrogator launching infrared light down the core of an 
optical fiber. As white color, broadband light, travels down the fiber, it passes through grating 
segments, also identified as FBG, which is a series of article filter. These grating segments can 
filter certain wavelength or color while letting others pass through. This happens by periodically 
altering refractive index of fiber dictating which wavelengths can pass and which will get 
reflected. External factors such as heat and vibration will cause a shift in wavelength of the 
reflected light. These variations can then translate into physical engineering units such as 
amplitude, temperature and strain. The principal sensing technology of FBG is illustrated in 
Figure 1. 



 

 

  

 
 

Figure 1-Measurement principal of Fiber Brag Grating (FBG) sensor 

3 DAMAGE DETECTION ALGORITHM 

3.1 Moving principal component analysis (MPCA) 

Two main concerns, delay in abnormality detection along with computational time issue, 
inspired the revision of classical PCA to make it more practical for long term SHM. Real life 
employment of SHM involves dealing with large amount of multivariate data. Only a small 
portion of abnormal data, in comparison to overall data, is available at the time when damage 
occurs. By means of PCA, the damage will be detectable only when the principal components 
(eigenvectors) are influenced by the abnormal behavior. Subsequently, eigenvectors are 
subjected to change only if certain amount of abnormal data captured and possibly affected the 
overall data set being analyzed. This feature makes PCA less effective for long term SHM 
implementation. Moving principal component analysis (MPCA) was proposed by (Posenato et 
al. 2008) to address this challenge. Basically, MPCA computes the PCA within moving 
windows with a constant size. A sensitive damage index (related to MPCA algorithm) is 
selected based on PCA outputs. The damage index (Dsi ) chosen for this study is simply the 
square root of the sum of the squares of the first two principal components as shown in Eqn.  
 
 

                                                                                                                 (1) 

 
where (PC1)i and (PC2)i are the first and the second principal components of sensor i 
respectively. The reason to just incorporate the first two principal components in the damage 
index is that the most useful information in the data is covered by the first few principal 
components values. In fact, the first principal component corresponds to the direction in which 
the projected data has the most variance while the second one is perpendicular to the first 
component. In other words, since more than 95% of the variance (calculated based on the 
preliminary study) is covered by the first two principal components, these two components are 
only incorporated in the damage index. It should be mentioned that the number of principal 
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components that should be considered depends on the data and there is not any prescription for 
all cases. However in the most cases the most variance is covered by the first two or three 
components. Therefore, if any damage occurred in structure then it should affect the data and 
consequently variance of data and should be detected by this damage index.  

3.2 Moving principal component analysis-Support vector machine (MPCA-SVM) 

3.2.1 Support vector machine (SVM) 

Support vector machine (SVM) is a powerful supervised machine learning algorithm, which are 
commonly used for classification, pattern recognition and also regression analysis (Cortes et 
al.1995). Linear SVM (LSVM) is the most preliminary form of SVM. In fact, a hyperplane or 
sets of hyperplanes are constructed by SVMs algorithm in such a way that they can be used for 
classification and in general for separation of different classes of data. LSVM is applicable only 
for the data which are linearly separable in the original feature space. However, since this is not 
the case in most of the real-life problems, the applications of LSVM are limited. For this reason, 
nonlinear support vector machine (NSVM) was proposed in order to deal with the data which 
are not linearly separable in original feature space. In order to perform such an analysis, in the 
first step, the data should be mapped from the original finite-dimensional space into much 
higher-dimensional space by taking advantages of kernel functions. Supposedly, this 
transformation should make the separation of the data much more feasible.  

3.2.2 Innovative damage detection algorithm (MPCA-SVM) 

As it is was discussed throughout section 3.1, although MPCA has exposed a reliable 
performance in terms of damage detectibility in comparison with other non-parametric damage 
detection algorithms, it still requires to be significantly improved particularly in terms of its 
time to detection aspect. In response to this demand, a new non-parametric damage detection 
algorithm is proposed by integrating the advantages of both MPCA and SVM methods. In fact, 
this new data interpretation approach consists of two distinctive phases, including feature 
extraction and pattern recognition. The objective of the preliminary phase (MPCA) is to extract 
the most informative features out of the raw data, whereas the second phase (SVM) is designed 
to recognize the pattern throughout the previously extracted features. 

The procedure for the first step is the same as the MPCA algorithm which was explained 
through the section 3.1. However, the second stage, SVM, is the new step, which is added to the 
MPCA algorithm to reduce the associated delay. To begin with, the time series of principal 
components corresponding to the individual sensors should be identified by taking the benefits 
of the MPCA algorithm. In order to carry out the MPCA, an appropriate moving window should 
be determined and consistently moved along the time to extract the datasets. In the next step, 
covariance matrix is computed for the extracted datasets. Consequently, the eigenvalues and 
eigenvectors of the covariance matrix are derived. The time series of eigenvectors corresponded 
to each sensor, are then fed into SVM algorithm (second phase) for further computation. The 
second phase (SVM) by itself, involves in several sub steps. Initially, the time series 
(eigenvectors) pairs that have higher correlation than correlation threshold should be identified 
and stored. Later, additional moving window is defined and moved along each pairs 
individually to extract dataset. 



 

 

  

Afterward, each of the extracted dataset is fed separately into SVM in order to train the 
algorithm. Therefore, for each dataset from each additional moving window (during the training 
phase) a hyperplane is determined. Finally, intercept of the hyperplane is considered as damage 
index. In other words, a confidence interval is established for dataset during the training phase 
and based on the intercept of hyperplane, which in turn is used in the monitoring phase as 
damage criteria. A summary of the aforementioned procedure is presented in Figure 2.  

 

Figure 2- Procedures for long term SHM using MPCA-SVM algorithm 

4 EXPERIMENTAL STUDIES 

4.1 Structural description and instrumentation (UCF 4-span bridge) 

For the sake of evaluating these algorithms using FBG sensors, several experiments with a 
laboratory bridge model were designed and conducted taking three common damage scenarios 
into consideration. The structure consists of two 120 cm approach (end) spans and two 304.8 cm 
main spans with a 3.18 mm thick, 120 cm wide steel deck supported by two HSS 25x25x3 
girders separated 60.96 cm from each other. Using the 4-span bridge model in the UCF 
structural laboratory (Figure 3), it is feasible to simulate and test a variety of damage scenarios 
that are commonly observed in bridge type structures. It is possible to simulate most of the 
common boundary conditions, including rollers, pin, and fixed support. It should be pointed out 
that even though the structure is not a scaled down model of a specific bridge, its responses are 
representative of typical values for medium-span bridges.  



 

 

  

4.2 Damage scenarios 

Based on the discussions with the Department of Transportation (DOT) engineers, three critical 
and common damage scenarios were identified and simulated on the 4-span bridge model. A 
crucial type of damage which was observed in bridges is alterations in the boundary conditions. 
These types of alterations may cause stress redistributions and in most cases it may result in 
additional load in different elements. Therefore, three cases were devoted to this type of damage 
using the advantage of the ability to shift from pinned to fix or roller condition or vice versa. 
The damage scenarios implemented in this study are illustrated in Figure 3.  

 

         

Figure 3- Location of sensors and simulated damage (UCF 4-span Bridge) 

5 DAMAGE ASSESSMENT 
 

Total number of 30 data sets, 15 from baseline condition and 15 from damage condition, has 
been considered in this study. Each data set consisted of approximately 10000 to 13000 data 
points. This results in a main matrix with 360175 rows (data points or measurements) and 12 
columns (number of FBG sensors or variables). Taking this information into account, the size of 
the moving window was chosen as 13000 x 12 while the moving rate (or window overlap) is 
selected as 2000 points. Since this is multivariate data analysis, the results of selective sensors 
are presented instead of individual sensors. For that reason, only the results for the sensors close 
to damage location will be considered as illustration purpose.  



 

 

  

5.1 First damage scenario 

The main idea behind this damage case is to simulate one of the most common faults in bridge 
type structures, which is altering the boundary condition from roller condition to fixed 
condition. In fact, this type of change will result in redistribution of force in the structure and 
may cause unexpected bending moment at boundary location, which can have detrimental effect 
on the performance of the structure. The corresponding results for the MPCA and MPCA-SVM 
are presented separately in Figure 4. As it is shown in this Figure, both methods (MPCA and 
MPCA-SVM) show reliable performance in detecting the damage. In fact, there is a significant 
separation in damage index due damage. However, MPCA detects the damage after 35000 data 
points from the exact occurrence of damage while MPCA-SVM reduces the delay to 16700 data 
points. This can be considered as a significant improvement in terms of time to detection. In 
other words, MPCA-SVM not only has a reliable and powerful detectability but also has the 
advantages of detecting damage faster than MPCA. This feature will be further evaluated by the 
other two damage scenarios. 

 

 

Figure 4- Results for MPCA (left) and MPCA-SVM (right) and case scenario1 

 

5.2 Second damage scenario 

The second damage scenario was designed and implemented to simulate the situation in which a 
number of bearings are experiencing the fixing issue. For that reason, the middle bearing was 
fixed in addition to the first one. The results for this case are summarized in Figure 5. The 
results corresponded to sensor 5 are presented for both MPCA and MPCA-SVM algorithm. 
Similar to the first case, here also, damage indeces for both algorithms exceed the confidence 
interval immediately after the introduction of the damage. Likewise scenario 1, MPCA detects 
the damage after 42560 data points whereas MPCA-SVM is able to detect damage only after 
176543 data points. 



 

 

  

5.3 Third damage scenario 

MPCA and MPCA-SVM outcomes for the third case are plotted in Figure 6. Since only the 
middle boundary condition is altered, only sensor 5 experienced a significant change. This 
scenario is also confirmed the advantages of MPCA-SVM than MPCA in terms of time to 
detection. 

 

 

Figure 5- Results for MPCA (left) and MPCA-SVM (right) and case scenario2 

 

 

Figure 6- Results for MPCA (left) and MPCA-SVM (right) and case scenario3 

6 CONCLUSION 

In this study, an algorithm is developed by integrating two powerful machine learning 
techniques including, Moving Principle Component Analysis (MPCA) and Support Vector 
Machine (SVM) techniques. In the first stage, the time series of eigenvectors associated with 
each sensor (variable) should be determined by taking advantage of MPCA, while in the second 



 

 

  

phase, these eigenvectors are fed into SVM algorithm. The intercept of hyperplane is considered 
as damage index for the MPCA-SVM method. In order to evaluate the advantages of MPCA-
SVM than MPCA, three of the most common damage scenarios are designed and simulated on 
the 4-span bridge model. The data are collected using an in-house developed FBG system and a 
network of FBG sensors, which are distributed all over the structure. Comparing the results 
obtained for MPCA and MPCA-SVM reveals the fact that the new data interpretation approach 
significantly reduces the time to detection while it also has good performance in terms of 
detectability. 
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