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ABSTRACT: In this study, the models from rock mechanics were extended to concrete to assess 
the ultimate compressive strength of axially loaded circular columns especially confined with 
fiber-reinforced polymer (FRP) composites. One of the models is based on Mohr-Coulomb 
failure criterion used by many authors as well. In addition two models essentially developed for 
intact rocks, Hoek-Brown and Johnston failure criteria, were extended to confined concrete and 
verified through the wide-range experimental data for short columns with the compressive 
strengths from 7 to 170 MPa and high confinement ratios up to 2.0. All models are in good 
agreement with experimental data for all confinement levels and concrete strengths. 

1 INTRODUCTION 
FRP composites are suitable for use in coastal and marine structures as well as civil 
infrastructure facilities due to their properties such as high strength-to-weight ratio, high-tensile 
strength and modulus, corrosion resistance and durability. FRP confinement enhances the 
seismic performance, energy absorption capacity and ductility. FRP jacket is applied for seismic 
rehabilitation of damaged reinforced concrete structures (e.g. pier column, fender pile in marine 
environment). FRP tube also provides a permanent formwork, savings in transportation costs 
and construction effort as well.  

The study encompasses to predict the ultimate strength of axially loaded circular columns via 
modified failure criteria. In addition to the widely used approach based on Mohr-Coulomb 
criterion, two failure criteria from rock mechanics, Hoek-Brown criterion (Hoek et.al.1995) and 
Johnston criterion (Johnston,1985) are modified to confined concrete, especially to FRP 
confinement. The averaged database comprises total n=131 data having the cylinder 
compressive strengths 7 MPa to 170 MPa, i.e. n=103 data for FRP-wrapped concrete cylinders 
and n=28 data for FRP tube encased cylinders. The modified failure criteria from rock 
mechanics can be also used successfully with respect to verification results. 

2  MODIFIED FAILURE CRITERIA 

2.1 General  
In this study, the Mohr-Coulomb criterion used by many authors widely and two failure criteria, 
Hoek-Brown and Johnston, from rock mechanics are focused and modified to FRP columns.  

 

 

 



 

 

  

Table 1. Failure Criteria extended to confined concrete from soil and rock mechanics  
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For the range of soil  
to rock  

(0.008  ci   600 MPa) 
 

 22.065 log  ciM C   
 C  is a function of the rock 
type (C=0.270 for sandstone 

and quartzite)    
 

  21 0.0172 log  ciB   

 : internal-friction angle ,  c : cohesive strength of soil,     M , B, m  : material coefficients 
ci , fco : uniaxial compressive strength of intact rock specimens and concrete cylinder strength, respectively       
3 , fl : minor principal stress or confining pressure, 1 , fcc: major principal stress at failure or ultimate strength  

 

2.2 Mohr Coulomb Failure Criterion and confined concrete  
Classical k coefficient proposed by Richart et.al. (1929) is 4.1 for actively and passively 
confined circular concrete sections. Later, Saatcioglu and Razvi (1992) expressed that k 
coefficient decreases with increasing confining pressure by approaching a constant value in steel 
reinforced concrete (RC). Lam and Teng (2002) showed that k is independent of the type of 
FRP confinement. In this study, it is focused to the experimental data of FRP wrapped specimen 
compiled from the literature (Figure 1). It is interesting that two significantly different trends are 
observed. In the first trend, the value of k is high in low confinement levels and declines to a 
constant value in high confinement levels. As a second trend, data is quite scattered in the low 
confinement levels. It may be suggested that k has either a constant value of about 2 or a 
variation displayed with the dashed line. The dashed line converges towards the first trend at 
medium confinement levels. Spoelstra and Monti (1999) stated that if fl / fco ratio is smaller than 
0.07, FRP wrapped concrete behaves similar to that of unconfined -control- concrete due to 
insufficient confinement. In this study, the variation of k reveals that the lack of confinement 
was generally observed in one-layer FRP wrapped cylinder specimens and partially in high 
strength levels. After excluding scattering data, the regression analysis of the first trend was 
conducted with n=103 data and an equation is derived with the correlation coefficient of R=0.95 
and IAE ratio (Integral Absolute Error) of 4.4-8.9 %. 
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The variation of k as the nonlinear function of  fl / fco is plotted in Figure 1. As for the high 
confinement levels of  fl / fco  1, k value converges to about 1.8 as well. The same trend is valid 
for FRP tube encased specimens (n=28) exactly. In Turkish Earthquake Code (2007), k 
coefficient was defined to be constant (k=2.4) for FRP confinement. The variation between the 
strengthening ratio and confinement ratio concerning all the FRP confinement types is displayed 
in Figure 2. 
 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Variation of confinement effectiveness k with confinement ratio  fl / fco for FRP wrapped 
                specimens.  
 
 
 
 
 
  

 

 

 

 

 

 

 

 

 
Figure 2. Variation of  fcc / fco with  fl / fco for FRP wrapped and FRP tube encased specimens 
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2.3 Hoek-Brown Failure Criterion and confined concrete  
In this failure criterion adapted from rock mechanics, the first step is to predict the value of the 
m constant in Table 1. The m values predicted for cylinder specimens according to the strength 
ranges from the wide range experimental data are displayed in Table 2 for different confining 
techniques. While m is in the range 4.8 to 3.3 for normal-strength concrete (20 to 40 MPa), it 
has a very low value (m=0.1) in the high-strength concrete especially over 80 MPa (Girgin, 
2009). This trend can be attributed to the close similarity between m and confinement 
effectiveness coefficient k. The highest m value (m=13;Girgin et.al.,2007) is under consideration 
for actively confined concrete and m value approaches to the lower range of rocks. The 
variations between strengthening ratio and confinement ratio are displayed for confined 
concrete by different ways and rock specimens in Figure 3.   
 

                      Table 2. The variation of predicted m constant through different confining techniques 
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material 
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Figure 3. Failure envelopes of some intact rock specimens and concrete confined by different confining 
materials via Hoek-Brown failure criterion (Girgin, 2009) 
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2.4 Johnston Failure Criterion and Confined Concrete  
This failure criterion covers a wide range of compressive strengths from clay soils to extremely 
hard rocks from 0.008 to 600 MPa. By extending to confined concrete, the failure envelope can 
be established easily by predicting B and M coefficients. The material coefficient M may be 
predicted as one value having a minimum error for all data. Herein, the material coefficient M is 
assigned to be 3.1 with min. IAE ratio of 5.7% for FRP confined concrete (n=131). It is 
interesting that M coefficient also stands for the lower range of limestone and sandstone within 
all the rock types. B coefficient may be predicted from Eq.(2). The practical importance of this 
equation is directly to estimate B coefficient via cylinder compressive strengths fco  
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In the analysis it is determined that B coefficient varies from 0.74 to 0.52 for the compressive 
strengths range from 7 MPa to 170 MPa and the IAE ratios are in the range of 4.0-8.2%. 
Johnston’s criterion is shown in Figure 4 with other failure criteria. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Failure envelopes (fco=39 MPa) corresponding to confinement ratios of FRP confined concrete 

 

3.    CONCLUSIONS 

The modified models from rock mechanics were extended to FRP confined concrete and the 
results are in a good agreement for the widest range data (7 to 170 MPa) so far. As for the 
model based on Mohr-Coulomb criterion, insufficient confinement may indicate low k values 
possibly due to the lack of FRP confinement, otherwise the size effect or very high compressive 
strength levels. In high confinement levels the k value converges to a constant value about 1.8. 
The material constant m of Hoek-Brown failure criterion is predicted in the range of m=13-0.1 
concerning confinement type and strength range. The material coefficient B of Johnston failure 
criterion is predicted from 0.74 to 0.52 for all the compressive strength range. As a general 
result, the ultimate strength in concrete confined by different confining materials can be 
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successfully predicted through the modified failure criteria from rock mechanics by only 
knowing cylinder compressive strength.  
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