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ABSTRACT: Damage diagnosis of structures subjected to time-varying environmental and 

operational conditions has been a challenging task. This task involves a damage indicator 

selection to characterize the unknown relation between the measurements and damage patterns. 

The majority of the conventional methods adopt hand designed damage indicators that can be 

inefficient for some damage patterns and require manual effort to design. To address these 

challenges, this work uses a special kind of deep learning method called convolutional neural 

network (CNN) to learn complex damage features and create complex classifier boundaries. In 

the evaluation of the proposed methodology, multi-dimensional input samples are used — each 

dimension has an individual strain field resulting from a different force applied to the structure. 

The network is trained with several crack scenarios and the learned architecture is tested on 

completely unseen damage setups. Based on the findings of the paper, CNNs fed through multi-

dimensional inputs improve the accuracy of the damage diagnosis. Furthermore, they give the 

opportunity to capture the behavior of the structures under variations in the loading conditions.  

1 INTRODUCTION 

Providing timely damage evaluation is important to establish lifetime safety of the 

infrastructures subjected to damage or deterioration (Fang et al., 2005). This process requires 

long term monitoring of the structures over a wide range of environmental and operational 

conditions (Sohn, 2007). Interpreting the health condition of structures from the collected sensor 

measurements often require selecting damage features. Traditional approaches primarily focus 

on hand-crafting damage features and classifiers which may not be efficient for diagnosing 

some damage patterns (Shi and Yu, 2012). Especially, when the data collected from large sensor 

networks are considered, damage feature extraction procedure might become computationally 

expensive (Yao et al., 2016; Gulgec et al., 2016). In order to overcome these problems, widely 

used biologically inspired soft-computing technique called neural networks were proposed in 

the 1990s (Flood and Kartam, 1994). Since then, they have been practiced to diagnose damages 

from static displacements (Szewczyk and Hajela, 1994; Zhao et al., 1998), the modal analysis of 

vibration response (Hearn and Testa, 1991; Hadzima-Nyarko et al., 2011) and statistical 

properties of vibration measurements (Shu et al., 2013). Other works demonstrated that more 

complex models are essential to use the full potential of the neural networks (Flood, 2008).  

A special type of neural network called convolutional neural network (CNN) was first proposed 

by LeCun et al. (1998) to capture the visual patterns from handwritten digits. This network 



  

 

  

architecture kept temporal features of the input and used fewer parameters to reduce memory 

requirements (LeCun, 1995). Then, it became more pronounced with the improvements in 

computing power and large-scale hierarchical image databases (Deng et al., 2009). CNNs kept 

evolving and got deeper and more complex which became the state-of-the-art technique in the 

image recognition (Szegedy et al., 2015; He et al., 2015). This breakthrough was also started to 

be practiced recently in structural health monitoring community (Abdeljaber et al., 2017; 

Gulgec et al., 2017; Cha et al., 2017). 

In Gulgec et al. (2017), authors addressed the damage detection challenge by using strain fields 

as inputs to CNN. However, the study did not consider the effect of time-varying environmental 

and operational conditions which may significantly affect the characteristics of the structure. 

Instead of using only strain fields as inputs, this study proposes multi-dimensional inputs to feed 

the architecture — each dimension has an individual strain field resulting from a different force 

applied to the structure at a different time. The multi-dimensionality improves the damage 

detection accuracy and captures the behavior of the network under the time-varying loads. 

Besides, this study reduces the computational demand by exploiting the shared parametrization 

of CNN and highly parallel architecture of graphical processing units (GPU) which may enable 

real-time damage diagnosis challenge. 

The rest of the paper is organized as follows. First, an overview of CNNs is provided in Section 

2; then, the description of proposed CNN architecture is described in Section 3. In Section 4, the 

main findings are presented. Conclusions are given in Section 5. 

2 OVERVIEW OF CONVOLUTIONAL NEURAL NETWORKS 

Deep learning (deep neural network or multi-layer neural network) is a branch of machine 

learning which is gradually evolved from pattern recognition (Bishop, 2006). Multi-layer neural 

networks form a model by using deep graph organized in multiple linear layers followed with 

some nonlinear transformations (LeCun et al., 2015). Figure 1 shows a small DNN consisting of 

an input layer, two hidden layers, and an output layer. The network operates on the input 

instance T
p21 )x,...,x,x(x  to obtain the output T

p21 )y,...,y,y(y  . Each layer is composed of 

neurons that are represented with circles. A connection from the output of one neuron to the 

input of another (i.e. weights) is shown with an arrow. Each neuron performs a weighted sum 

operation of the inputs followed by nonlinear mapping (e.g. sigmoid, tanh, etc.). 

 
Figure 1. An example of deep neural network with four layers. 

 

Convolutional neural network (CNN) is one of the most widely used multi-layer neural 

networks. This special type of architecture takes the advantage of the temporal correlation of the 



  

 

  

input (LeCun et al., 1998). CNN architectures can be built by using three types of layers such as 

convolutional layers (CONV), sub-sampling layers (POOL) and fully connected layers (FC). 

(i) Convolutional layer parameters share the learnable weights and biases along the 

depth of the input. Feature maps are formed as these weights (filters or kernels) are 

passed through the entire input, and the dot product between the filter and the small 

region of the input in any position is computed. Then, nonlinear activation functions 

are used to activate the feature maps. This framework is called local receptive fields 

which allow extracting multiple feature maps as many as the number of filters. This 

property makes CNN robust to the translation and distortion of the input (i.e. the 

feature map will be shifted by the same amount of input shifting). Furthermore, 

these feature maps use shared weights and biases, which reduce the number of 

learned parameters and the memory needs.  

(ii) Sub-sampling (or pooling) layer performs a downsampling operation (e.g. using 

maximum, average, sum operations) in the feature maps to reduce the resolution of 

the feature maps and avoid overfitting.  

(iii) Fully-connected layer operates on the vectorized convolution or pooling layer 

outputs and computes the weighted sum of inputs composed with nonlinear 

mapping like multi-layer neural networks. 

3 PROPOSED METHODOLOGY 

3.1 Data Preparation 

The neural network architecture should be trained with well-known damage states in order to 

have accurate damage detection (Elkordy et al., 1993). Thus, finite element model of steel 

structural connection is simulated in ABAQUS. The connection consists of 508 mm long 

C8x11.5 channels welded to a steel plate (711.2x355.6x6.4 mm) with 203.2 mm overlaps 

(Figure 2). Elastic-perfectly plastic steel which has a yield strength of 250 MPa is chosen as 

material and the model mesh size is adopted as 12.7 mm.  

Training, validation and test data sets are created by simulating different loading and damage 

scenarios (i.e. “healthy” and “damaged”). Damages are modeled as 25.4 mm long cracks with a 

specified load in the range of ~U[-444.8 kN (compression), 533.8 kN (tension)]. In order to 

assess the effect of unseen damages, the coordinates of training samples are not used in the 

testing samples. Figure 2 shows the crack location coordinates used for training and test data 

sets.  

 
 
Figure 2. The damage locations for testing and training data sets. 



  

 

  

The CNN receives the input instances as 3D volumes (i.e. width, height, depth). For instance, if 

the input was RGB (red-green-blue) image, it would have a depth of three (the number of the 

color channels). In this study, strain fields of the structural connection resulting from different 

loading conditions are stacked layer by layer to form a 3D volume. The first two layers 

(baseline) are constructed with the strain field from healthy cases, whereas last two layers 

(query) are concatenated from two unknown states. Figure 3 shows an example multi-

dimensional input sample with two healthy strain distribution followed by two damaged state of 

the structure. A total 7,200 “healthy” and 7,200 “damaged” samples with the size of 28x56x4 

are created and distributed to the training, validation, and test data sets. The multi-dimensional 

input is normalized for each strain field by dividing its maximum and then used to feed the 

network. 

 
Figure 3. An example of multi-dimensional input. 

3.2 Architecture Overview 

3.2.1 Training 

For a given input px  , prediction function )w;x( can be parameterized by weights (w). 

After building the prediction function, a loss function is selected to measure the error between a 

prediction and the true value. The loss function can be denoted as )y),w;x((  where 
cy  is 

the true value (also called the label) of the input query x. The exact distribution of these inputs 

and labels are almost impossible to know in practice. Therefore, n sample data points, which is 

called training dataset, are used to minimize the empirical loss.  
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In this study, the label of the final output is found by softmax classifier (Bridle, 1990). The class 

i of the input x is predicted by choosing the maximum probability of softmax function: 
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Training process adopts back-propagation algorithm which is comprised of two phases: feed-

forward computation and back-propagation (Rojas, 2013). The feed-forward process gets the 

input and evaluates the prediction function. Then, the back-propagation process updates the 

weights based on their contribution to the total error (Rumelhart et al., 1998). In this study, the 

stochastic gradient descent (SGD) methodology (Robbins and Monro, 1951) is implemented to 

calculate the gradients of the error with respect to the parameters (i.e. weights and biases) in the 

network. The negative log-likelihood is employed as the loss function of back-propagation 

process, where optimal model parameters are learned by minimizing the negative likelihood of 

the data. After the gradients are calculated with SGD, the model parameters are updated with 

the learning rate. No further optimization is implemented if the model performance is improved 

enough on the validation set (i.e. early stopping criteria). Proposed study is trained by using a 

Python library called Theano to optimize the mathematical expressions (Team T.T.D., 2016). 

The higher performance of these data-intensive calculations is achieved by NVIDIA Tesla K80 

GPUs which enable parallelism for data processing.  

3.2.2 Hyperparameter Optimization 

The performance of the network highly depends on identifying a good set of hyperparameters 

(Li et al., 2016). These hyperparameters include the number of CONV and FC layers, the 

number of convolution filters and their sizes, pooling filter sizes, learning rate and the number 

of hidden layers. In this study, total 50 different networks are generated with different 

hyperparameters. The hyperparameters are randomly chosen from the list such as: the number of 

CONV Layers: [1,2 or 3]; the number of FC layers: [1,2 or 3]; convolutional filter size: [(3x3) 

or (5x5)], the number of filter (kernel) sizes [2 to 27]; max-pooling size: [(2x2) or (1x1)]; 

learning rate: [2 to 2-8] and random hidden layer sizes. All networks are performed for one 

epoch, then, 10% of the networks which have the worst validation score are removed. The 

remaining networks are run for another epoch until the best 10 networks remain.  

3.2.3 Putting It All Together - Proposed Network Architecture 

Figure 4 shows the proposed network obtained by hyperparameter search mechanism with 

learning rate 015.0 . The network architecture has one convolution layer. Here, the input is 

convolved with 8 filters (kernels) size of 5x5x4 to produce 8 feature maps, then these feature 

maps are activated by a nonlinear function tanh(). The CONV layer follows pooling layer where 

downsampling operation is performed with a maximum operator. Two fully connected layers 

with hidden layer size of 6207 and 1737 operate on the vectorized output of the pooling layer to 

classify the input as healthy or damaged. 



  

 

  

 

Figure 4. The proposed architecture for multi-dimensional input. 

4 RESULTS AND DISCUSSION 

The proposed architecture is tested on the previously unseen damage states and the learning 

curve is presented in Figure 5. As shown in the figure, the validation and testing error of the 

network is 0.36% and 0.62%, respectively. Learned filters can be investigated to better 

understand the behavior of the stacked layers (2 baseline + 2 query). This requires a simpler 

network architecture since it becomes difficult to visualize the filters when the network becomes 

deeper. In this case, all the nonlinearities and early stopping criteria are removed from the 

training procedure. One convolutional layer (with the filter size of 5x5), one pooling layer (filter 

size of 2x2) and one fully connected layer size of 618 are built and run for 1,000 epochs. The 

learning rate is adopted as 011.0 . 

   
Figure 5. The learning curve of the proposed network.  

It is observed that the first two learned filters show high similarities since the baseline layers 

belong to the layers solely created by healthy cases. On the other hand, the learned filters from 

two query inputs (either healthy or damaged) are not highly correlated like first two filters. This 

finding shows that even a small network can find some correlations of similar damage scenarios 

and it gives the opportunity to capture the behavior of the structures under the time-varying 

forces.  

Lastly, the experiments are repeated with only one baseline (healthy) and two query (unknown) 

layers since first two filters are almost similar. The network is run through hypermeter search as 

described in Section 3 and the best network is presented in Figure 7. The best network has two 

convolutional layers with 3x3 filters followed by two fully-connected layers size of 3909 and 

3420. The feature maps are transformed with tanh() function and learning rate is adopted 

022.0 . The validation and testing errors are found as 0.36% and 0.5%, respectively.  



  

 

  

 

Figure 7. The network architecture for one healthy and two query layered inputs. 

The findings are compared with the study (Gulgec et al. 2017) in Table 1. The table shows that 

the test error decreases considerably when the multi-dimensional input (normalized within each 

dimension) is adopted. Therefore, motivating the problem with multi-dimensional input 

improves the accuracy of the damage diagnosis. Furthermore, the obtained error rates show that 

a number of baseline layers do not affect the damage diagnosis accuracy significantly. 

Table 1. The comparison of the test errors. 

Model Test Error (%) Reference 

1 query  2.06 Gulgec et al., 2017 

2 baseline + 2 query  0.62 This study (Figure 4) 

1 baseline + 2 query 0.50 This study (Figure 7) 

5 CONCLUSIONS  

This paper presents the damage evaluation of a structural connection which is subjected to time-

varying loads by performing convolutional neural networks. The proposed methodology feeds 

the network architecture with multi-dimensional inputs where each dimension has an individual 

strain distribution resulting from a different force applied to the structure at a different time. The 

findings show that it is worthwhile to include samples from a wide range of operational and 

environmental conditions in the training dataset. This approach improves the damage detection 

accuracy and helps to capture the behavior of the network under the time-varying conditions.  
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