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ABSTRACT: The use of reinforced masonry retention walls has become widely spread in South America 

as a fast-built and relatively economical construction technique. Nevertheless, there exists no much 

information related to the behavioral characterization of this type of elements. Experimental results 

exhibit both a highly nonlinear behavior and large dispersion of results since fragile masonry cells are 

filled with flowable concrete of low resistance and their reinforcement is basically composed of small-

diameter steel bars. In the framework of an experimental program, a set of reinforced masonry-wall strips 

were tested under flexure for different steel reinforcement ratios. The experimental results obtained were 

numerically simulated using an inelastic-spring for the representation of plastic displacements and lumped 

damage with a nonlinear kinematic hardening model. The characterization performed through these 

numerical simulations allowed the training and validation of artificial neural network (ANN) model to 

obtain damage patterns and fragility curves. The ANN methodology is used as a partial surrogate model 

that seeks to consider an irreducible dispersion in the experimental data, and for the stochastic prediction 

of the structural parameters of the physical-based constitutive model (nonlinear spring). These structural 

parameters, which have a physical meaning (stiffness, damage, permanent displacement), help improving 

the understanding of the nonlinear material behavior. It is evident that the ANN must be trained with 

experimental reliable data of good quality. 

1 INTRODUCTION 

Reinforced masonry, a structural system widely used in Latin America for soil retaining walls, is a fast-

built and relatively economical construction technique when compared to its reinforced concrete 

counterpart. A reinforced masonry wall is composed of concrete masonry cell units (CMU) joined by a 

mortar. These CMUs are filled with a flowable concrete mixture that provides an adequate level of 

workability that ensures a perfect engagement between the mortar and reinforced masonry wall [Gallegos 

et al. (2018)]. The metallic reinforcement usually consists of 13-mm diameter reinforcing bars. However, 

some studies have indicated that smaller diameters can ensure a more ductile performance [Castillo 

(2009)]. Being a very heterogeneous material, the structural response of an RMU walls present a 

considerable dispersion in the parameters that characterize its flexural behavior such as (1) rigidity; (2) 

yield strength; (3) ultimate load; and (4) ultimate displacement. Several models have been reported to 

characterize the plasticity and degradation of flexural elements in the literature [Do et al. (2018)]. For the 

study reported herein, an implementation of artificial neural networks (ANN) was conducted to 
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investigate the structural response of strips of RMU walls given the outstanding associated memory 

capacity exhibited by this technique [Hurtado (2002)]. 

ANN can work as a partial surrogate model that seeks to consider an irreducible dispersion in this 

composite material (reinforced masonry). Furthermore, ANN have proved to handle several type of 

engineering problems that demand complex response models [e.g., Douma et al. (2017, Abu Yaman et al. 

(2017)]. The main principle underlying this technique consists of emulating the learning and inference 

capacity of the biological neurons that constitute the human brain. This is achieved by following 

computational algorithms that simulate the information-transmission phenomenon throughout neurons 

(synapse) using weighting functions that are readjusted for different input parameters. The algorithm 

requires the training of the ANN (i.e., adjusting of the synaptic weights) by relating a set of known inputs 

with a set of outputs to be determined as depicted by Nunes-Silva et al. (2017). 

The present work aimed at characterizing the process of plasticity and degradation of reinforced masonry 

strips (RMS) [Vergara (2012)]. To attain this objective the ANNs were trained [Barreto (2016)] with data 

obtained from a degradable elasto-plastic, physical-based constitutive model [Cipollina et al. (1995, 

Inglessis et al. (2002)] that was calibrated with experimental data recorded from tests conducted on the 

aforementioned RMS. The purpose of the study was to showcase the outstanding feature of ANNs to 

detect underlying patterns (degradation and plasticity) in the partial substitution of complex structural 

models that do not consider the randomness of the data given its deterministic nature. The elasto-plastic 

model was used to obtain a larger number of points of the force-displacement curve additional to those 

obtained from lab experiments. 

2 PROBLEM FORMULATION 

A set of RMS was designed using different configurations of metallic reinforcement and was tested under 

flexural monotonic cycles (load and unloads) as reported by Vergara (2012). The ANN approach was 

used due to the dispersion of the force-displacement curves. Subsequently, the tests were simulated with a 

computational program based on the damage model proposed by Flórez-López et al. (2014). This model 

is based on the concept of plastic behavior combined with the methods of continuous damage mechanics 

and assumes the inelastic phenomena (plasticity and degradation) are concentrated in an inelastic hinge 

with flexural plastic rotation and axial plastic elongation. For this model, a frame element is an assembly 

of a beam-column element with elasto-plastic behavior and the mentioned inelastic lumped hinge. The 

response of a cantilever retention wall with nonlinear behavior at the base or the simply supported RMS 

carrying loads applied at their center line, evaluated on this study, may be simulated by using a modified 

version of the model proposed by Flórez-López et al. (2014). This is done by assuming no flexural hinge 

is formed at the center line of the simply supported wall and using an equivalent single degree of freedom 

(SDOF) system instead. The equivalent SDOF system consists of a nonlinear elasto-plastic spring with 

damage and axial rigidity equivalent to the flexural stiffness of the strip. The state of energy dissipation is 

characterized by two variables: plastic displacement and damage index that takes values in the interval [0, 

1]. A damage index value of zero corresponds to an intact, non-cracked strip, and an index value of one 

corresponds to a totally damaged strip. Note that the equivalent spring is an indirect way to consider the 

lumped inelastic hinge. 

The few unload cycles of the tests (from 3 to 5 unloads per test), were used to calibrate the numerical 

nonlinear spring models; then a greater number of unloads were simulated to obtain enough values of 

damage and permanent displacement. This new information was used to train and validate an ANN 

software [Barreto (2016)] designed to predict the degradation process of reinforced masonry walls 

(RMW). The next sections describe (1) the laboratory flexural tests; (2) the degradable elasto-plastic 
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model for an equivalent axial spring; and (3) the ANN model. For the last two procedures (2 and 3), 

computational subroutines were developed to characterize the RMS behavior. Since the present work 

employs a physical-based constitutive law model, ANN was used as a partial surrogate model that seeks 

to consider an irreducible dispersion in the experimental data by monitoring the dissipation variables of 

the constitutive model. These variables, which have a physical meaning (stiffness, damage, and 

permanent displacement), help improving the understanding of the nonlinear material behavior. It worth 

mentioning that the successful ANN must be trained with data of good quality and reliability. 

2.1 Experimental Program 

A set of 80 RMS was fabricated using different diameters and locations of the metallic reinforcement 

(Vergara 2012). The RMS consisted of rows fabricated with five concrete masonry cell units (CMU) with 

a height of 200 mm. The height of an RMS was 1000 mm [Figure 1(a)]. The CMU were connected by a 

cement mortar joint (using a 3 to 1 sand-cement ratio and a 3 to 4 water-cement proportion). The cross 

section of the blocks was 150 mm by 400 mm [Figure 1(b)]. Inside the empty cells of the strips, metallic 

bars and very flowable concrete were placed [with an average compressive strength of 15.7 MPa]. 

Strength tests were performed on the CMU, mortar, flowable filling concrete and rebars. RMS were 

subjected to a line load applied at the midspan of the specimen [Figure 1(b)]. The load pattern consisted 

of a displacement–control test recording the history of force and displacement every millimeter until the 

collapse of the specimen was reached. For each test, a total of three to five cycles were conducted. Figure 

1(c) shows the force-displacement relationship for two identical specimens showing a different response. 

The red line corresponds to a specimen that failed due to the adherence of the metal bars, and the blue line 

shows the response of a specimen that showed a ductile failure. 

 

 

Figure 1. Experimental program details. (a) RMS specimen; (b) load pattern; and (c) force-displacement curve of 
two tests. Conversion factors: 1 m = 1000 mm. 

2.2 Elasto-plastic Spring Model Coupled with Damage and Nonlinear Hardening (EPDM) 

The simply supported masonry strips can be modeled as a one-degree of freedom system by using a 

nonlinear spring whose axial rigidity is equivalent to the flexural rigidity of the strips. The concept of 

inelastic bending hinge is avoided for modeling purposes. The main difficulty of the mathematical 

representation of the elasto-plastic model is that an infinite number of forces can correspond to a given 
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value of the displacement. In the elasto-plastic model coupled with damage [Flórez-López et al. (2014)], 

it is necessary to introduce "internal variables”. For the present work, these variables are the vertical 

permanent displacement, Δp, and the damage, D. The external applied force, P, is determined using 

Equation (1). 

 𝑃 = (1 − 𝐷)𝐾0(∆ − ∆𝑝) (1) 

where K0 represents the initial flexural stiffness of the strip, and ∆  is the total displacement. The damage 

variable can take values between zero (intact material) and one (completely damage material). Equation 

(1) cannot be considered as a constitutive equation since the permanent displacement (p) and the damage 

(D) are unknown. In addition, these two variables depend on the history of total displacement. It is 

necessary to introduce additional relationships that allow the determination of these unknown variables. 

These equations are called evolution laws for the permanent displacement and damage. For plastic 

models, the evolution laws are expressed by means of a "yield function". In the case of elasto-plastic 

model coupled with damage, a yield function, f, is defined by Equation (2): 

 𝑓(𝑃, 𝐷) = |
𝑃

(1 − 𝐷)
− 𝑋| − 𝑃𝑦 ≤ 0 (2) 

where Py is the yielding force corresponding to the first permanent displacement ∆p; and X is the 

kinematic hardening force that considers the position of the center of the elastic domain; for nonlinear 

kinematic hardening models, X is given by Equation (3): 

 𝑋(∆𝑝) = (𝑃𝑢−𝑃𝑦)(1 − 𝑒∆𝑝) (3) 

where Pu is the maximum limit imposed to the force and  is a material´s constant that define the strain 

hardening path [i.e., α is a parameter that represents the slope of the resulting line in a plot of ln(Pu –Py) 

vs.  ∆𝑝]. The softening deformation behavior is not considering in the present model. The evolution law 

for permanent displacements are differential equations given by Equations (4) and (5): 

 𝑑∆𝑝= 0 𝑖𝑓 𝑓(𝑃, 𝐷) < 0  𝑜𝑟  𝑑𝑓(𝑃, 𝐷) < 0 (4) 

 𝑑∆𝑝≠ 0 𝑖𝑓 𝑓(𝑃, 𝐷) = 0  𝑎𝑛𝑑  𝑑𝑓(𝑃, 𝐷) = 0 (5) 

Equation (4) has two conditions that characterize the elastic behavior. The force is lower than the yielding 

force, or elastic unload occurs regardless of the force value. Equation (5) represents the elastic-plastic 

behavior (i.e., permanent displacements are only possible if the force is equal to the yield force, and no 

elastic unload process occurs). In Equation (1), the term (1 – D) K0 is known as the effective stiffness 𝐾̅. 

Solving for the damage, D, an indirect measurement of the damage from the elastic unload is defined by 

Equation (6): 

 𝐷 = 1 − 𝐾̅ 𝐾0⁄  (6) 

In Equation (6), each of these damage measurements is associated to a given Δp and an effective 

stiffness 𝐾̅. In this manner, a relationship can be found being the damage a function of permanent 

displacement (evolution law or ductile damage) as described by Equation (7): 

 𝐷 = 𝑚(∆𝑝 − ∆𝑐𝑟) (7) 
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where m is the slope of the straight line in the graph D vs p; ∆cr is the permanent displacement 

corresponding to the beginning of damage. Note that a linear relation between internal variables is 

imposed. In addition, it must be highlighted that in Equation (2) both the damage and hardening variables 

[given by Equations (3) and (7)] are functions of the permanent displacement because the model 

represents a ductile damage phenomenon. Equations (1), (4) and (5) represent the constitutive model for 

an elasto-plastic axial nonlinear spring coupled to damage and considering nonlinear kinematic 

hardening, representing simply supported masonry strips. 

2.3 Artificial Neural Networks (ANN) 

An ANN is inspired by biological neural networks simulating a series of characteristics of the human 

brain such as (1) learning based on experience; (2) generalization of the experience; and (3) extraction of 

the main features of a series of data (hidden patterns). An artificial neuron combines several inputs by 

basic addition operations. The sum of the entries is modified by a transfer function and its result is 

transmitted. These outputs are connected to the inputs of other neurons through weighted connections or 

weights (synapses). The network consists of an input layer, hidden layers and an output layer. Learning of 

a network, in artificial intelligence context, consists basically in the adaptation of the synaptic weights. 

During the training phase, weights gradually converge towards the values that make each input produce a 

desired output vector. This learning is called “supervised” if the training is controlled by modifying the 

weights to get an approximation to a desired output, so the network does not need to find the features, 

regularities, correlations or categories between the input data. The training stops when the quadratic error 

of the data reaches a minimum or when for each of the given examples a pre-established threshold is 

reached. Once the learning is finished, the weights will not be modified again. The next phase of 

validation corresponds to checking if the neural network can solve new problems of the general type for 

which it has been trained. A new data set (inputs and outputs) is used but the network will not change the 

synaptic weights. Then, the expected solution (validation data) is compared with the solution of the 

network. 

In the present work, a backpropagation network was used. For this type of ANN, the error propagates 

backwards from the output layer, allowing the synaptic weights of the hidden layers to change during 

training. This type of ANN is characterized by its generic ability to map patterns that have a supervised 

training method. A correlated pair pattern is introduced (i.e., an input pattern with a desired output 

pattern), and the weights are adjusted to minimize the error between the desired output and the network 

response. Learning can be slow due to the difficult to determining the number of neurons and layers 

needed. Moreover, learning is unable to detect new patterns, only those that are the same or like the used 

in training. Convergence is obtained by minimizing the error, usually by means of first-order derivatives 

in the optimization process. In the present investigation, a back-propagation algorithm based on the 

Levenbert-Mardquardt method, which is based on second order derivatives (Nunes 2017), was used. This 

algorithm combines back propagation error and Newton's method. Therefore, subroutines were elaborated 

to predict the nonlinear behavior of the samples through ANN. The network was trained with several 

loads and unloads simulated by the degradable elasto-plastic numerical models described in section 2.2 

that were previously calibrated with the experimental data of the RMS described in section 2.1. This 

model allowed to obtain continuous load data, total displacement, permanent displacement and damage 

that were used for training and validation. Within the training phase, all the possible combinations for 

input and output with the representative variables were used. The one that corresponds to the damage 

represented the only output with the best results. The data of all the specimens were randomly separated 

into training, validation and test groups (70% training, 15% validation, 15% test). The linear regression 

adjustments for the data (training, validation and test) resulted with a coefficient of determination of 0.99. 



  

6 

 

3 ANALYSIS OF RESULTS 

The experimental force-displacement curves showed different behavior that varied from those with (1) 

similar envelopes but different values of the permanent displacement and damage; (2) different ductility; 

(3) different type of failure (bond failure versus ductile behavior); (4) constructive defects creating 

changes of the boundary conditions of the specimens during the test; and (5) different degree of strain 

softening as shown in the force-displacement curves [Figure 1 (c)]. An initial analysis of the ANNs was 

performed using the entire data partitioned into different groups for the training, validation and testing 

phases (70%, 15%, 15%). Preliminary results demonstrated the difficulty of the algorithm for learning 

due to an exaggerated dispersion of training data [Figure 2 (a)]. 

3.1 Artificial Neural Network (ANN) Trained with the Nonlinear Spring Model (EPDM) 

In a first phase, results were discriminated for those tests with exaggerated disturbing behavior (i.e., case 

of bond failure tests) allowing a second phase for the training. No classification machine learning 

procedure were used for this purpose. Figure 2(b) shows force-displacement curves simulation for a group 

of specimens used in the training. Plastic softening was not considered. A test strip is modeled by ANN 

(red line) and compared with the result obtained by the numerical model (blue line). In Figure 2(c), the 

damage obtained by the ANN and that obtained with the numerical model show an excellent fit. The 

model of plasticity and damage (EPDM) allowed to simulate many unloads data (used for training) that 

would hardly be obtained in an experimental test. 

 
 

 

Figure 2. Results. (a) RMS tests’ data; (b) test and simulation results; (c) damage vs. permanent displacement. 
Conversion factors: Conversion factors: 1 cm = 10 mm; 1 kgf = 9.8 N. 

3.2 Model of ANN using experimental data 

Neural networks were trained with only experimental data, corresponding to three elastic unloads per 

specimen test. That is, only three permanent displacement values and their corresponding damage values. 

Therefore, force and displacement values belonging to these unloads were used (unlike the procedure 
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described in section 3.1, where data was taken from simulations with the numerical EPDM model). After 

preliminary trial-and-error attempts, ten nodes were used for the hidden layer, leaving the architecture of 

input-hidden layer-output as [4, 10, 1] Once trained, we proceeded to test the ANN for 4 unknown 

unloads of the same specimen. The damage values obtained were compared with those simulated by the 

EPDM model obtaining a negligible error, however, the number of iterations was 246; moreover, the 

amount of force and displacement values that had to be used for the training was considerably much 

greater than that of section 3.1. 

The linear correlation, R, of the expected data (targets) and those estimated by the network (output) was 

one during the training, validation and proof phases. This confirms that the network is perfectly trained if 

the data behavior during the learning phase is not too different.  In this case, the network was trained for 

only a layer. When several strips were used, the network was not capable of obtaining acceptable values. 

It might have been possible that network was not capable of making a distinction due to the high density 

of the cloud of points [Figure 2(a)]. Consequently, this could lead to the incapacity of the network to find 

the adequate relationship between the permanent deformation and damage, especially for those cases 

where the damage increment is not physically acceptable.  

3.3 Artificial neural network used to construct fragility curves 

Damage indexes were estimated using the ANN approach for different force values adjusted to a 

lognormal probability distribution. The log-normal distribution has been widely employed to build 

fragility curves [Bonett (2003)]. Once the best fit of the probability distribution was known, the 

cumulative distribution functions were obtained [Sanchez (2015)]. These cumulative functions were 

classified for values of damage that ranged from slight (less than 0.1), smooth (0.1–0.2), moderate (0.2–

0.3), and strong (0.3–0.4). The points of intersection with the vertical axis represent the exceedance 

probability for the four damage segments defined previously. The fragility curves represent exceedance 

probability of a damage state as function of the actions that cause it (i.e., external applied load in this 

case). The exceedance probability was estimated as PE = (1 – CDF). Figure 3 shows the fragility curve 

damage obtained using ANN on the external applied load. 

 

Figure 3. Fragility curves of strip sets 

4 CONCLUSIONS 

Artificial neural networks have demonstrated to be a powerful alternative technique to handle complex 

engineering problems such as nonlinear behavior with certain degree of dispersion of the input data. This 
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ANN technique allows to train an algorithm with a small amount of experimental data, or a combination 

of experimental and numerical simulation data to predict new input data problems. The main feature of 

ANN is its ability to find underlying patterns from the data. However, reliable information with enough 

quality must be available. The response of neural networks is very sensitive to the characteristics and 

statistical patterns of the data used for training. The experimental training data obtained for masonry strips 

is highly sensitive to variables such as (1) construction quality; (2) specimen’s support conditions; and (3) 

failure due to steel debonding. An important goal of the design process is the estimation of a balanced 

number of neurons of the hidden layers to ensure an efficient prediction of output data. In the present 

work, the ANN methodology was used as partial surrogate model that seeks to consider an irreducible 

dispersion in the experimental data because a physical-based constitutive model (nonlinear spring) was 

used. The ANN found a good relation that fitted with the experimental data. The stochastic prediction of 

the structural parameters, having physical meaning (stiffness, damage, and permanent displacement), 

helped improving the understanding of the nonlinear behavior of the reinforced masonry strips (RMS). 

However, it is worth to mention that the quality and reliability of the training data is a critical issue. The 

use of ANN methods based on physical model can result in a significant reduction of time and cost 

savings. Moreover, as increasing computational efficiency and convergency in many structural 

engineering tasks. In contrast, ANN based on non-physical models do not require complex mathematical 

formulation based on its ability to find hidden patterns during the training phase. However, since ANN 

works as a black box, it fails to improve the understanding of the nature of the problem under study. 
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