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ABSTRACT: Structure inspection is essential to ensure the safety and integrity of critical civil 

infrastructures. The current practice is human-based visual inspection, which is time consuming 

and subjective. To improve the inspection of civil infrastructure and complement human-

oriented inspection, computer vision-based techniques have been employed to detect structural 

defects, such as cracks and corrosions. In this paper, to provide an effective and useful defect 

(cracks and corrosions) identification (detection and segmentation), deep learning-based 

approaches are developed as an integrated framework for defect detection, segmentation, 

assessment and visualization using 3D reality mesh modeling technology. The robustness of 

these techniques is evaluated and demonstrated using real cases of  the bridge structures, road 

pavement, and tunnel inspection. The results obtained show that the proposed framework is 

effective and readily applicable to various engineering structures. 

1 INSTRODUCTION 

Civil infrastructures, such as bridges, dams, roads, and highways, are becoming more 

susceptible to lose their designed functions as they deteriorate over time. These structures, are 

often subjected to fatigue stress and periodic loading which leads to cracks on the structures’ 

surface. The cracks on the structure reduce the local stiffness and cause material discontinuities 

(Budiansky & O'connel, 1976; Aboudi, 1987). In the meantime, the study conducted by 

National Association of Corrosion Engineering shows that the total direct cost of corrosion in 

five major sectors of US economy is more than $140 billion. Corrosions in infrastructure alone 

cost $22.6 billion, which is 16.4% of the total annual cost. Among them, $8.3 billion is the 

estimated cost for highways and bridges. This indicates the importance of detecting defects such 

as cracks and corrosions. To do so, regular inspection is essential. It is usually conducted by 

taking photos and videos. Due to large number of images collected during the inspection, it is 

imperative to effectively and efficiently process the images for defect evaluation.  

 

This inevitable process has prompted an early detections as preventive measures to avoid further 

damage and possible failures. Manual inspection is still the standard practice for any damage or 

crack detection. In manual inspection, the process is performed by human inspector who prepare 

the sketch of the crack damage by recording any irregular conditions on the structures. Since 

this approach completely depends on the inspector’s expertise, it lacks objectivity in the 

quantitative analysis. Therefore, many researches have been conducted to replace the process 

with automatic vision-based crack detection.  

 

Due to its simplicity, several vision-based methods for detecting crack damages, primarily using 

image processing techniques (IPTs), have been proposed. An early comparative study was done 
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by Abdul-Qader et. al (Abdul-Qader, Abudayyeh, & Kelly, 2003) in which they used four edge 

detection methods to detect crack damages on bridges. Unfortunately, using edge detection to 

detect crack damages is an ill-posed problem since the results are significantly affected by the 

image noises such as irregular illumination and shading. IPT methods have also been applied to 

corrosion detection (Ortiz et al. 2016). Recently, many researchers have implemented a 

combination of IPT-based feature extractions and machine learning based classifications (Moon 

& Kim, 2011; O'Byrne, Schoefs, Ghosh, & Pakrashi, 2013; Jahanshahi, Masri, Padgett, & 

Sukhatme, 2013; Wu, Mokhtari, Nazef, Nam, & Yun, 2014). However, the results of these 

approaches still suffer from the false feature extraction of IPTs since the extracted features using 

IPTs are still considered hand-crafted and does not necessarily represent the true characteristics 

of crack damages.  

 

To overcome this issue, convolutional neural networks (CNN) have been adopted and 

implemented for an effective crack detection (Cha, Choi, & Buyukozturk, 2017; Zhang, Cheng, 

& Zhang, 2018) as well as corrosion detection (Hoshere et al. 2017; Atha and Jahanshahi 2018). 

Although the previous applications of CNN prove to be effective for crack detection with 

bounding box, the detected crack damages are neither segmented nor statistically evaluated for 

condition assessment. Mask region-based CNN (Mask R-CNN) (He, Gkioxari, Dollar, Girshick, 

& Ross, 2017), a state-of-the-art image segmentation with relatively fast detection speed, is 

found to be an effective method for this task. Mask R-CNN can generate mask image for every 

detected object. In this paper, Mask R-CNN is applied to detect and segment crack damages for 

civil infrastructures, together with 3D mesh and texture model for intuitive visualization and 

crack evaluation.  

 

2 DEEP LEARNING 

 

Deep learning is one of machine learning techniques. It is multi-layered artificial neural 

networks which can learn and represent data using multiple levels of abstraction. Deep learning 

models are different from traditional machine learning techniques in that they can learn the 

representations of the data without introducing any hand-crafted rules or knowledge. This 

means that deep learning technique is highly flexible and effective for solving many challenging 

problems, including but not limited to image processing, medicine, biometrics, and engineering 

(Vargas, Mosavi, & Ruiz, 2017). One of deep learning method is Mask R-CNN which achieves 

state-of-the-art performance for object detection and instance segmentation. This method is 

directly applicable and appropriate for crack damage detection and segmentation.  

 

2.1 Mask R-CNN Architecture 

 

Mask R-CNN is built and improved upon Faster R-CNN. The original Faster R-CNN has two 

outputs for each candidate object, a class label and a bounding box offset. Mask R-CNN adds a 

third branch that outputs the object mask giving a much finer spatial layout of an object. As a 

result, Mask R-CNN can perform object detection and segmentation with better efficiency and 

accuracy. Mask R-CNN has the same two-stage detection process as Faster R-CNN, as seen in 

Fig. 1. For the first stage, region proposal network (RPN), outputs a set of potential regions of 

interest (RoI) with certain aspect ratios (anchors) and evaluate how good each of these anchors 

are. These RoIs will become the input for the second stage. In the second stage, the algorithm 
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will output bounding box offset, the class name, and binary mask for each object in parallel. The 

loss function is defined for the three tasks on each sampled RoI, class prediction, bounding box 

refinement, and mask generation. Class prediction and bounding box regression loss are 

collected from both RPN and mask generation stages, whereas mask loss is taken only from 

mask generation stage.  

 
Fig. 1: Mask R-CNN architecture for instance segmentation (Hui, 2018) 

 

3 TRAINING MASK R-CNN 

 

The image dataset was acquired from a provider of field inspection applications and asset 

management services for bridges. In this dataset, all the images were captured by the field 

inspector using regular camera and taken without any prior conditioning. 1250 images of 

bridges and structures were selected where crack damages can be seen visually. The dataset was 

split into two categories, 1000 images are used for training and 250 images are for testing. 

Training and testing samples were annotated manually using image labelling tool for creating 

bounding box and Microsoft Paint for generating crack mask labels. Fig 2 shows some 

examples for the image and the mask label in the datasets. 

 

 
(raw input)  (ground-truth mask) (raw input)                     (ground-truth mask) 

Fig. 2: Some examples of the image in the crack damage datasets. 

 

3.1 Transfer Learning 

 

Deep convolutional neural network usually contains millions of trainable parameters to train; 

therefore, a relatively large dataset is needed. Directly training such a huge number of 

parameters is problematic, especially when the training dataset is small. Transfer learning 

provides a way to improve one model by transferring the knowledge of another model that has 

been trained previously. In transfer learning, a base network is first trained on a base dataset and 
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task, and then the learned features were transferred to a second target network to be re-trained 

on the target dataset and task. The improvement is extremely significant and that’s the reason 

the technique is adopted in this paper. 

 

To fit into GPU memory, all images were resized to a maximum dimension of 1024 pixel (either 

width or height) while retaining the original aspect ratio. Stochastic gradient descent (SGD) was 

performed for 30,000 iterations with initial learning rate of 0.003 and momentum of 0.9. 

Additional augmentation was also done to each individual image. This includes image rotations 

by 90°, flipping (vertical and horizontal), scaling, and shifting. The Mask R-CNN code is based 

on the open-source implementation of TensorFlow object detection API and is available online 

(Huang, et al., 2017). Training was done using pre-trained model on COCO dataset and then the 

model was fine-tuned on crack damage dataset. Two base networks, ResNet101 and Inception-

Resnet, were used to train the model. The calculation was performed on Amazon EC2 instances.  

 

4 RESULT 

 

Some examples of the crack damage segmentation results on bridges and structures can be seen 

in Fig. 3. The experimental results demonstrate the effectiveness and advantage of Mask R-

CNN in detecting crack damage in a complex scenery.  

 

   
   

   
 

 (input image)          (inferenced image) (inferenced mask) 
Fig. 3: Sample results of crack detection and segmentation. 

 



   

5 

 

   
 

Figure 4. Sample results of corrosion detection and segmentation 

4.1 Evaluation Metrics 

 

Discrete scores were used as the criteria for quantitative comparison for the benchmark and one 

common approach to evaluate instance segmentation performance is to use average precision 

(AP). Each detected mask is considered a true positive if its intersection-over-union (IoU) ratio 

with its ground-truth annotation is greater than some IoU threshold. The value of IoU threshold 

is referenced from MS COCO dataset evaluation metrics with fixed IoU threshold at 0.5 (AP0.50) 

and averaging AP over [0.50, 0.95] with an increment of 0.05 (AP). There is also APmedium for 

objects that has 322 < area < 962 and APlarge for objects that has area > 962. 
 

Table 1: Evaluation result of the trained models. 

 AP AP0.50 APmedium APlarge 

Resnet101 0.0065 0.048 0.0010 0.025 

Inception-Resnet 0.0070 0.050 0.0013 0.050 

 

The result shows high confidence in predicting bounding boxes for crack damage objects. 

However, the value of average precision for mask image seems rather low. This can be 

attributed to multiple detections of the same crack damage objects in an image and, 

unfortunately, this happens quite frequently. The reason for this is because there is no definite 

shape and orientation for a crack damage object making it impossible to get a consistent label in 

creating the ground truth for the masking crack damage. As a result, the network seems to 

confuse itself on how to determine the number of crack object in the image. This issue may be 

overcome if there are more images in the training dataset. 

 

In evaluating the crack damage statistics, reality modeling technology (Bentley 2018) was used 

to construct the 3D model with crack-detected and segmented images. For every connected 

crack in the inferenced mask images, the area of the crack is first measured by calculating the 

number of pixels in the inferenced mask image. The length of the crack was obtained by 

applying thinning algorithm iteratively until the shape of the crack only shows one-pixel width. 

Once this is achieved, the average crack width is estimated with the area divided by the length. 

Finally, all the quantified cracks are classified in different categories or levels according to the 

estimated width, and the crack statistics can be generated for the assessment of infrastructure 

condition.  
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(a) Cracks segmented with 3D mesh model        

 
(b) Quantitative assessment of the identified cracks  

 

Fig. 4: Visualization of detected cracks with 3D models and crack evaluation. 

 

The result is illustrated in the Fig. 4, where a set of images of crack damages on the wall was 

taken and using the 3D mesh model, a fused image was reconstructed. The inferenced 

segmented crack damage was color coded based on the width level of the crack. To quantify the 

cracks (width and length) in distance unit, a conversion factor must be worked out to convert the 

number of pixels to metric unit. The inner side of the glass window was measured to be 108.60 

cm wide on the building wall and covered by 1880 pixels in the image. Therefore, a conversion 

factor of 0.06 cm/pixels is obtained. Using this scale factor, each crack segment can be 

quantified for its average width and length. Thus, the crack statistics is conducted and the result, 

as illustrated in Fig. 4, is color coded based on the width level of the crack. Purple color is crack 

area with average width greater than 1.16 cm, green color is crack area with average width 0.58 

– 1.16 cm, while pink color is crack area with average width of 0.06 – 0.58 cm.   
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5 CONCLUSIONS 

In this study, deep learning-based approach has been developed by using Mask R-CNN to 

automatically detect and segment crack and corrosion for civil structures. Two base networks 

were trained using the bridge inspection images, which were split into training and testing 

datasets. The results show that defects can be detected and seghmented with a good level of 

precision. Quantitative evalution on seghmented cracks was propsoed by using 3D reality model 

technology. This research study shows that the detection and quantification of crack and 

corrosion using deep learning methods is not only promising but practically usefulfor civil 

structural inspection with satisfactory results. 
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