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ABSTRACT: A central challenge to maintaining roads that has existed since the Romans built 

the Appian Way over 2,000 years ago is regular, thorough inspection of the roads. Visual 

inspection was the inspection mode in ancient Rome and it is the most common method now 

around the world and not just for roads but for all large infrastructure. Fortunately, recent 

advances in both AI/deep learning and inexpensive but precise sensors has created the opportunity 

to transform the way infrastructure is monitored and repaired, with the result of lower 

maintenance costs. Roadbotics uses standard smartphones and computer vision with deep learning 

to assess road surfaces and roadways. The images from the smartphones are analyzed to find 

cracks, potholes, and patches and give the road an overall score between 1 and 5. The final results 

can be loaded into any standard GIS asset management application or displayed to the end-user 

on an interactive map through a web browser. 

1 INTRODUCTION 

Roadway maintenance presents a significant issue worldwide.  A 2014 report estimated that the 

United States would need to spend 45.2 billion dollars per year to maintain the existing 

infrastructure in good conditions, nearly three times the existing expenditure of 16.2 billion 

dollars per year (Jaffe, 2015). Pavement inspection and monitoring is a critical part of successfully 

maintaining roadway infrastructure that often places a significant cost and labor burden on public 

works departments and roadway managers.  The predominant current practice is not unlike what 

the Romans did 2000 years ago: visual surveys, where the Roman chariot has been replaced by a 

pickup truck. A second type of practice is less common: high-tech, high-cost solutions that require 

specialized vehicles. 

Technological advances have enabled very precise measurements of roadway distresses.  For 

example, ARAN systems can be outfitted with numerous sensors including video, longitudinal 

laser profiling, transverse laser profiling, ground penetrating radar, and more (ARAN - survey 

subsystems, 2018).  Unfortunately, systems like this require substantial capital investment.  This 

typically means that smaller public works departments, municipalities, and even cities with 

substantial road networks must get inspections from contracting firms where the costs are passed 

on by charging hundreds of dollars per kilometer.  While the level of precision provided by these 

technologies is impressive, it is debatable whether it is critical for all applications.  Furthermore, 

the cost burden often forces those municipalities that do decide to get these inspections into a 2- 

to 5-year inspection cycle, where either the entire network is done every few years or portions of 

the road network are done each year.   

Often the financial burden of technological solutions deters roadway managers who then opt to 

perform visual surveys.  This is especially true of local governments with small public works 
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departments overseeing road networks on the order of 200 km in length.  Visual surveys, either 

done in-house or by contracting with engineering firms, require field crews to drive the entire 

network to make visual judgements and record their findings about the road condition.  

Furthermore, these inspections are often done at speeds below the speed limit, with crew member 

potentially getting out of the vehicle for closer inspection on an active roadway, potentially posing 

a safety hazard.  These inspections are often the most practical for smaller road networks, since 

they require little to no upfront cost and existing resources (e.g. employees and public works 

vehicles) can be deployed. 

Visual inspections typically follow an established rating methodology such as PASER (Walker, 

2002) or Pavement Condition Index (PCI) (Pavement Condition Index 101, 2009).  For asphalt 

surfaces, PASER involves breaking the road network into 1-2 km sections in rural areas and 1-4 

block sections in urban areas.  Each section is given a score from 1-10 based on the presence and 

severity of various asphalt distresses, such as cracking, potholes, raveling, bleeding, and rutting.  

Similarly, PCI typically involves dividing the road network into 1 block sections in urban areas 

and up to 10 km sections and evaluating the presence and severity of various distresses.  Once the 

presence and severity of each distress type is determined, they are all given a weighted 

contribution to a 0-100 rating.  One issue with visual inspections is that while they attempt to 

introduce objectivity in determining the overall score, there is a certain level of subjectivity that 

goes into assessing the severity and overall impact of different distresses.  For example, 

recognizing a large pothole is something that can be done by almost anyone with little to no 

training, whereas distinguishing five levels of severity in raveling or rutting by visual appearance 

can introduce disagreement between raters.  

Recent advances in computer vision and machine learning, especially with respect to deep neural 

networks, have empowered numerous applications.  Billions of dollars are currently being 

invested into the sensing capabilities of autonomous vehicles as well as safety systems such as 

Subaru’s EyeSight technology.  Similar technologies can be leveraged for automated visual 

assessments using video data as the basis of a low-cost sensor platform.  Varadharajan et al (2014) 

originally proposed this idea in a paper showing the feasibility of detecting cracks in asphalt using 

computer vision and video data collected with smartphones.  While some degree of capital 

investment is needed in developing these technologies, their utility can scale extremely well so 

that the research and development costs can be amortized across many road inspections, 

ultimately minimizing the costs passed on to roadway managers.  In addition to advances in 

software, consumer demand has driven significant developments in hardware.  Now, a typical 

smartphone contains a powerful processor, high quality camera, GPS sensor, accelerometer, 

gyroscope, magnetometer, large storage, an intuitive user interface and more.   

All these capabilities are available for prices ranging from $200-$800.  These technological 

advancements can be harnessed either as is or as cheaply built, application specific hardware.  

These hardware devices can be deployed by professional drivers, fleet vehicles (e.g. garbage 

trucks, or package delivery vehicles), or by existing public works vehicles. Overall, the 

combination of low-cost data acquisition platforms with the capability and scalability of machine 

learning poses an opportunity to provide efficient, affordable solutions that strike a middle ground 

between the precision of current high-tech solutions and lower-cost visual inspections. 

2 LOW-COST SENSOR PLATFORMS 

Hardware advances in the past few years have gained huge strides, primarily driven by consumer 

applications, such as social media.  Consumer devices like a typical smartphone, dash-cameras 

such as those made by BlackVue, or various action cams such as the GoPro Hero line all offer 

relatively high-quality camera sensors, accelerometers, and global positioning for only a few 
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hundred dollars.  Smart phones in particular not only come with sensors such as gyroscope and 

magnetometer, but are also programmable, typically with robust software development kits 

(SDK).  Furthermore, some models have been equipped with stereo cameras or even built-in 

thermal imaging.  These capabilities are packaged in a small form-factor, capable of storing an 

entire day’s worth of data collection on an SD card.  Overall, these devices have formed the 

foundations of a low-cost, mobile sensor platform capable of acquiring the necessary data for road 

inspection.  Data acquisition pipelines can be built by deploying professionally trained drivers 

using custom applications, free or paid crowd-sourcing, attaching hardware to existing 

municipally owned vehicles, or leveraging existing vehicle fleets.  The latter poses an interesting 

opportunity, since there are garbage trucks, street sweepers, mail delivery vehicles, school buses, 

public transportation, and delivery trucks that already drive over nearly every street at predictable 

time intervals.  In addition, many of the newer consumer vehicles are equipped with video and 

GPS capabilities that are paired with data connections.  Overall, there are ample opportunities to 

build a low-cost sensor platform adequate for road inspection. 

3 DETECTING DISTRESSES WITH DEEP LEARNING 

Applications of convolutional neural networks (CNN) for computer vision have exploded 

recently, including systems for autonomous vehicles (e.g. Huval et al, 2015), processing satellite 

imagery (e. g. Chen et al, 2014), automating medical diagnoses (e. g. Esteva et al, 2017), and 

much more.  Applications are typically classified as semantic segmentations or object 

identification.  Semantic segmentation involves classifying each pixel of the image as one label 

in predetermined set of classes (e.g. sidewalk, person, pavement, etc).  Object identification 

involves detecting the presence of a predetermined set of objects and additionally giving their 

location in the form of a bounding box.  More recent approaches have combined the two 

approaches to identify the presence of objects and output their pixel level segmentation, such as 

with mask R-CNN (He et al, 2017). 

 

 

Figure 1.  Annotation of distresses by painting over them using custom web-based labeling platform. 



   

4 

 

We have developed a semantic segmentation model to identify pavement distresses.  This type of 

model is appropriate, since in most cases the pavement distresses do not make up discrete objects 

(e.g. raveling, cracking).  Using a custom-built labeling platform (see Figure 1), trained labelers 

annotated selected distresses for video frames by “painting” over top of the distresses with a brush 

tool.  Training the model to identify distresses then essentially becomes a process of teaching the 

model to recreate the “paintings” of the human labelers.  In more technical terms, the annotations 

by human labelers are converted to binary masks (arrays of 0s and 1s) for each distress type with 

values of 1 denoting the presence of that particular distress for a given pixel.  The model then 

learns to map RGB color images (MxNx3 array where MxN is the image resolution and the last 

dimension is the 3 colors) to a probability map for each class (MxNxP array where P is the number 

of classes).  Figures 2 and 3 show example model predictions for various classes. 

 

 

Figure 2. Selected segmentations from our deep learning model.  Left column contains raw video frames.  

Right column contains model output where grayscale value indicates probability (i.e. black = 0%; 

white=100%). 
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Figure 3. Selected segmentations from our deep learning model.  Left column contains raw video frames.  

Right column contains model output where grayscale value indicates probability (i.e. black = 0%; 

white=100%). 

4 AUTOMATED ROAD INSPECTION SYSTEM 

We have developed a commercially available automated road inspection system.  Using a custom 

developed application, we collect video and GPS data using Android smartphones mounted to the 

windshield with standard suction cup mounts.  This setup is depicted in Figure 4.  A second phone 

is used to navigate prepared turn-by-turn routes to ensure coverage of the desired region.  

Professionally trained drivers are deployed to drive the prepared routes.  After collection, our 

application uploads video and GPS data to Google Cloud Platform (GCP), where individual 

frames are extracted at 3-meter intervals and indexed by time and spatial coordinates for efficient 

lookup. 
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Figure 4. An android phone running custom software records video, GPS, and accelerometer data.  A second 

phone is used for turn-by-turn navigation (not shown). 

Once the data have been uploaded and processed, scaled deployment of our deep learning model 

starts.  Frames are processed in parallel by up to 96000 computational workers (1000 server 

instances with 96 computational threads each).  We typically use fewer workers (~1000), in which 

an entire municipality (around 200 km) can be processed in a couple hours.  Aggregate statistics 

are calculated on the segmentation masks per frame, which are combined into an overall 1-5 score, 

similar to the calculation of PCI.  Example images for each rating are shown in Figure 5.   

 

Figure 5. Example images demonstrating our overall 1-5 ratings. 
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After all required frames have been rated, the output enters the final stage of the processing 

pipeline where all the point data (video frame with GPS coordinates, rating, and other metadata) 

are localized to Open Street Maps roads that have been divided into intersection-to-intersection 

segments.  Average ratings are calculated on a per segment basis, and the final results for point 

and segment data are sent to our web-browser-based visualization platform for delivery to the 

end-user.  Screen-shots of network level visualization are shown in Figure 6. 

 

 

Figure 6. Network level display of ratings.  The left image shows ratings that have been averaged on 

intersection-to-intersection road segments.  The right image shows individual images that are sampled every 

3 meters along the road.  Users can click the points or segments to display additional information, such as 

to view the associated image. 

 

5 CONCLUDING REMARKS 

We have demonstrated the successful implementation of a fully automated, AI-based pavement 

inspection system.  This system requires minimal capital investment in hardware by taking 

advantage of low-cost, readily available smartphones as our sensor platform.  The use of cloud 

computing means that the system can scale efficiently.  There are, however, ample opportunities 

to expand capabilities.  For example, consider two roadway types which are not paved surfaces 

but are nevertheless commonplace: brick roads and gravel roads. The former are common in 

residential neighborhoods, as well as scenic downtowns and departments of public works do 

spend money to assess and maintain them. They pose a further level of challenge to AI-based 

assessment as they are more difficult to visually assess in the first place and visual features that 

could be indicative of damage in a paved surface (e.g. long cracks), may actually be normal 

features (e. g. the indentation separating each brick).  Gravel roads, by contrast, tend to be more 

frequent in rural areas, but often of equal or greater importance, because gravel roads are more 

often than not the roads by which important capital assets are serviced. Examples include wind 

farms, power plants, and factories.  Future efforts will focus on improving the current capabilities 

as well expanding them to other surface types, such as gravel and brick roads. 
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