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ABSTRACT: The construction industry ranks in the back rows in terms of digitalization. The 

numerous existing bridge structures require considerable effort for inspection and reliable 

assessment of their condition. However, the state-of-the-art for inspecting these structures still 

relies on the visual inspection realized by bridge inspectors. The current paper summarizes several 

research projects in the field of condition assessment of bridge structures at the University of 

Luxembourg by analysing the structural response due to dynamic excitation and static loading 

tests. 

The latest development aims at using the most modern measurement techniques by combining 

them to a new method, the Deformation Area Difference (DAD)-Method in order to simplify and 

automatize at most the inspection process. The proposed DAD-Method is based on conventional 

static load deflection tests. It allows the localization of stiffness-reducing damage by using a very 

precise measurement of the deflection line and by combining this outcome to the deflection line 

generated by a simplified finite element model of the bridge. In order to investigate the condition 

of a bridge by the DAD-Method modern measurement techniques such as photogrammetry and 

laser scanning are used. In the framework of the conducted research, these techniques are also 

compared to traditional measurement systems such as total station and inductive displacement 

sensors as well as to digital levelling sensors. By theoretical examples and experimental tests, it 

can be shown that the DAD-Method is able to detect and localize damage when the damage level 

is dominant on the measurement noise. 

 This paper investigates also the application of the method on a real bridge structure in 

Luxembourg. All of the above-mentioned measurement techniques were used, whereby the 

photogrammetry is applied using both, stable tripods and an autonomous flying drone. This allows 

examining the accuracy of the different measurement systems when applied on a real-size 

structure. 

1 INTRODUCTION 

The condition of the existing bridges, the increase of their average age and their preservation is 

nowadays a great challenge. Indeed, bridge structures are not only confronted to an increasing 

traffic level, but also the proportion of heavy trucks has significantly increased in the recent years. 

Heavy-duty trucks are primarily affecting the roads and the bridge structure condition. For 

instance, the influence of a truck with an axle load of 10 tons corresponds to the impact of 160.000 

car axles with 0,50 tons and for an truck axle load of 11,5 tons the corresponding number of the 

car axles amounts to 280.000 [1]. The country specific standards require regular visual bridge 

inspection, which commonly varies between two and six years [2]. In case of uncertainties and 

conspicuities during a visual inspection, further methods such as acoustic or ultrasonic methods 
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[3], radiography, magnetic or thermal field methods [4] could be applied. However, a drawback 

of the visual inspection is that for larger bridge structures the inspection is time and cost 

consuming. Furthermore, damage, which is inside the load bearing structure, will remain 

undetected [5]. Results from research projects using condition assessment methods based on 

dynamic or static parameters show that structural responses such as eigenfrequencies [6] [7] [8] 

and deflection curves [9] [10] contain information which can be used to detect stiffness reducing 

damage.  

 The current paper summarizes several research projects in the field of condition 

assessment of bridge structures at the University of Luxembourg. The main contributions are in 

line with the doctoral theses and publications of Bungard [11], Scherbaum [12] and Erdenebat 

[13]. [14]. The focus of these studies ranges from linear and non-linear dynamic analysis to static 

load deflection investigations. The results of various finite element models, laboratory tests and 

real bridge experiments collected over the years are presented. All of the presented bridge tests 

are carried out in Luxembourg. The results from dynamic analysis confirm that damage changes 

the structural response parameters such as eigenfrequencies, eigenmodes and damping. However, 

the sensitivity of the structural response due to dynamic excitation is low. Further influence 

factors, such as e.g. the stiffness change of the asphalt layer in function of temperature variation, 

has also been analysed and some experimental results will be presented. Compared to the 

condition assessment based on dynamic parameters, the condition assessment based on static 

loading tests allow not only the identification of damage but also its localization. However, a 

continuous measurement of the deflection line with high precision is indispensable. The presented 

so called “Deformation Area Difference (DAD) Method” bases on static load deflection 

experiment to detect local stiffness reducing damage.  

2 CONDITION ASSESSMENT BASED ON DYNAMIC EXCITATION 

Eigenfrequencies and mode shapes as a global structural response depending on the stiffness of a 

structure characterize the structural response to dynamic excitation. Thus, in principle, stiffness 

reducing damage will affect these parameters. However, damage identification and in particular 

their localization will remain difficult as the dynamic response of a structure is always a global 

response of this structure. Thus, identifying an exact position of a local damage out of a global 

response is challenging. However, damage identification and in particular there localization will 

remain difficult as the changes of the eigenfrequencies and mode shapes are not directly correlated 

to the stiffness of the system. This is only possible by means of a dense measurement grid and by 

using mode shape information respectively information of its derivate like the mode shape 

curvatures. However, the measurement accuracy as well as the data evaluation and interpretation 

remain challenging. 

Within a first research project [11], condition assessment using dynamic excitation was performed 

on reinforced and prestressed beams in various finite element model-based calculations and 

subsequent laboratory tests. The aim of the study was to analyse how damage affect the modal 

properties and how to use the findings for condition assessment of structures. The investigated 

reinforced concrete beam was subjected to a stepwise loading leading to gradual cracking and to 

yielding of the reinforcement. Within the test, static parameters such as deflection and strain along 

the cross section’s height were measured and in addition, dynamic parameters such as 

eigenfrequencies and damping values have been recorded. In summary, all measured parameters 

presented changes as a result of stiffness reduction. However, the changes of the dynamic 

parameters remain small in comparison to the static parameters.  

Based on these results, a first method has been developed which is based on the calculation of the 

area differences of mode shapes measured for different damage stages. In order to allow damage 
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localisation, the beams were first subdivided in finite sections over the length of the structure. 

Furthermore, a normalization by dividing by the sum of all area differences is needed. The 

squaring allows to increase the sensitivity of the results. In order to respect also the impact of 

higher eigenfrequencies, the sum of the all eigenfrequencies measurements for each section is 

created. The method is presented in equation (1) as Mode shape Areas Differences MSAD [11].  
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3 THE DEFORMATION AREA DIFFERENCE (DAD) METHOD 

 As the deformation of a structure depends on the stiffness, the deflection curve behaves 

continuous if no stiffness change appears in the load bearing structure. The curvature κ(x)  of a 

structure is given by the relation of the moment M(x) and the bending stiffness EI(x), which can 

be approximated by the double derivation of the deflection (equation (2)).  

𝜅(𝑥) =
𝑀(𝑥)

𝐸𝐼(𝑥)
≅ 𝑤"(𝑥) (2) 

 In order to enable the identification of damage and even to provide its location, a 

continuous measurement of the deflection along the longitudinal axis of the structure is necessary. 

Thus, the technical challenge lies not only in a very fine measurement grid, but also in a very 

precise data acquisition owed to the double derivation calculation. However, stiffness changes 

may also occur due to e.g. a variable cross-section of a bridge structure along its longitudinal axis. 

All these considerations complicate the condition assessment of structures based on a load 

deflection tests. 

The so-called “Deformation Area Difference (DAD) Method”, which has been developed by the 

Laboratory of Solid Structures at the University of Luxembourg, tries to balance the above-

mentioned drawbacks. It enables the localization of stiffness reducing damage based on load 

deflection experiments. In principle, there are two requirements for the successful application of 

the method. On the one hand, the measurement of the deflection line along the structure have to 

be acquired as precise as possible and on the other hand, a theoretical deflection curve of the 

structure needs to be used as reference curve. 

 The theoretical model respectively a finite element calculation is needed in case no initial 

reference measurement on the bridge structure is available. Furthermore, the finite element 

calculation is used to consider structural elements, which is leading to stiffness changes and 

differs from any damage. It is known that a theoretical model usually cannot exactly represent 

measured values. However, this is not a problem as the exact modelling of the structure is not a 

prerequisite for the application of the DAD method. Thus, the continuous deflection curve of the 

finite element analysis is not used in a direct comparison with the measured data but only as a 

complementary item by the DAD method to ensure only the damage induced stiffness reductions. 

The DAD method detects exclusively discontinuities of the load-bearing structure, so not the 

extent of the damage. The DAD method enables the detection of every smallest stiffness change 

in the structure compared to the continuous curve from the reference system.  

 The DAD-method investigates the area between the curvature curve from the reference 

system and the curvature curve from the deflection measurement. The following theoretical 

example of a 54 m long bridge illustrates the method. A load deflection experiment is carried out 

on a bridge structure with a local damage, which is equivalent to a stiffness reduction of 60% at 

a given point. The black line in Figure 1 illustrates the curves from the undamaged reference 

system. In the three diagrams, the deflection wt(x), the inclination angle φt(x) and the curvature 

κt(x) are represented. The red line shows the deflection wd(x), the inclination angle φd(x) (first 

derivation of the deflection line) and the curvature κd(x) for the damaged structure. 
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Figure 1 Principle of the DAD-method, investigation of the area differences. 

The DAD-method particularly considers the area difference between the reference and the 

damaged curves (yellow area in Figure 1). The area is divided into small regular sections. Each 

area is squared and normalized by the sum of the individual squared areas (equation (3)). 

𝐷𝐴𝐷,𝑖(𝑥) =
∆𝐴,𝑖

2

∑ ∆𝐴,𝑖
2𝑛

𝑖=1

=
[𝜑𝑑(𝑥𝑖) − 𝜑𝑑(𝑥𝑖−1) − 𝜑𝑡(𝑥𝑖) + 𝜑𝑡(𝑥𝑖−1)]2

∑ [𝜑𝑑(𝑥𝑖) − 𝜑𝑑(𝑥𝑖−1) − 𝜑𝑡(𝑥𝑖) + 𝜑𝑡(𝑥𝑖−1)]2𝑛
𝑖=1

 (3)  

The section length should be chosen in accordance with the measurement grid. The squaring of 

the individual section parts leads to an increase of the sensitivity of the method. Figure 2 shows 

the detected damage applying the DAD-method on the example shown in Figure 1 where the 

damage could be clearly identified and localized. Further investigations are currently 

concentrating on [14] the minimization and smoothing of noise effects. 
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Figure 2 Detected local damage by application of the DAD-method 

4 INFLUENCE OF THE ASPHALT LAYER ON THE CONDITION ASSESSMENT OF 
BRIDGE STRUCTURES 

In case of in situ experiments on bridge structures, the condition assessment depends on all 

stiffness-influencing factors. Especially, the asphalt deck plays here an important role as its 

stiffness is highly depending on the environmental temperature conditions. While the asphalt layer 

is only considered as loading at design stage and its stiffness is neglected, this assumption is not 

anymore valid when an in-situ condition assessment of a bridge structure is being performed. The 

relation of the stiffness of the asphalt layer and its bond behaviour depending on temperature 

variations were investigated in the laboratory and real bridge structures. 

4.1 Laboratory tests 

Figure 3 shows the experimental setup of a laboratory test where a hollow prestressed slab element 

with a length of 1,8 m is analysed for two different variations, one with and one without an asphalt 
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layer. The specimens are loaded at mid span within a climatic chamber. The considered 

temperature variations ranged from -10°C, 0°C, 10°C, 20°C, 30°C to 40°C. The structural 

responses are measured by strain gauges and by inductive displacement sensors. 

 

Figure 3 Setup of the static test without asphalt layer (left) and with asphalt layer (right) [12] 

Figure 4 shows the measured deflections for the test slabs without (left side) and with (right side) 

asphalt layer. The denomination K-1 to K-8 indicate the order of the temperature variation for the 

experimental procedure. In the left diagram, it can be clearly seen that the measured deflection 

behaviour in the repeated loading processes is nearly independent from the temperature variations. 

However, the right diagram shows a strong influence of the asphalt layer depending on the 

temperature variations. As the asphalt behaves very stiff at low temperatures, the stiffness of the 

specimen increases accordingly. Comparing with the deformation measured at 20°C, the 

influence of the asphalt at 40°C amounts to about 13%, while this effect is responsible for a 

reduction of about 53% for a temperature of -10°C. So, a clear influence of the asphalt layer on 

the stiffness could be demonstrated. 

 

Figure 4 Force deformation diagram - slab without asphalt (left) and slab with asphalt layer (right) [12] 

4.2 Bridge experiments 

To investigate the impact of temperature variation on the stiffness of the asphalt layer and thus, 

on the condition assessment of bridge structures, in situ loading tests analysing the load-

deformation behaviour were performed on different bridges (Figure 5). 

The bridge in Moestroff is a prestressed concrete slab bridge with a total length of 71 m and three 

spans. The height of the construction amounts to 1,27 m and the width to 12,37 m. The bridge 



   

6 

 

structure was loaded at mid span by four trucks with an individual weight of about 44 tons per 

truck. The bridge in Useldange consists of two spans with a total length of 37 m. It is a composite 

structure of steel S355 and concrete C45/55. Two trucks with the weight of about 44 tons loaded 

the bridge. The main aim of this study was to find out to what extend the asphalt layer affects the 

stiffness of the whole structure. The load deflection tests were carried out at different seasons and 

at different temperatures. The average temperatures of the asphalt layer of the Moestroff bridge 

during the different tests which were spread over a year amounted to 5°C for January, 10°C for 

March and 45°C for July, whereas the temperatures of the Useldange bridge were about 10°C for 

February and about 23,5°C for August. The deflection of the bridge in Moestroff increased about 

21 % for a temperature difference of 35°C, whereas the deflection behaviour of the bridge in 

Useldange increased by about 11% for a temperature difference of 14°C. These results clearly 

show that for the condition assessment of bridges the stiffness of the asphalt layer has to be taken 

into consideration. 

 

Figure 5 Climatic influence on the deflection behaviour of the bridges in Moestroff (left) and in Useldange 

(right) [12] 

5 REAL BRIDGE TEST A WITH STEPWISE DAMAGING PROCESS 

Within the framework of a reorganization of the urban planning, several intact bridge were 

demolished on the Plateau Kirchberg of Luxembourg City. The Laboratory of Solid Structures of 

the University of Luxembourg could take this opportunity for performing several experimental 

investigations by introducing controlled damage to three bridges. Two of these bridges are shown 

in Figure 6. On the left side of Figure 6 the “Deutsche Bank bridge”, a prestressed concrete slab 

bridge built in 1974 with a total length of 51 m and a construction height of 70 cm, is presented. 

The right side of Figure 6 shows the “Champangshiehl bridge”, a 103 m long 2 span prestressed 

box girder bridge built in 1966. Both bridges were gradually damaged by cutting in several steps 

selected tendons and the response of the structure to static loading and dynamic excitation was 

studied for each damage level. 

For the “Deutsche Bank” bridge, different damage scenarios have been investigated, whereby a 

first step consisted in removing the asphalt layer. For this bridge, the contribution of the asphalt 

layer on the total stiffness of the bridge structure was found to be low. This could be explained 

by the fact that the temperature range for which the defection line was measured before and after 

removal of the asphalt layer was only between 10° and 30°C. In summary, the influence of the 

local cutting of the bonded tendons leaded only to a very small impact on both the static and the 

dynamic parameters. Although, 31% of the prestressing force were finally cut, no cracking 

occurred and thus, no measurable stiffness reduction could be detected. A re-anchoring of the 

tendons leaded to a limitation of the impact to the area close to the cutting zone. An analysis 

showed that if the measured parameters would be judge according to the minimum requirements 
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of the DAfStb-RIL loading test [15] or to the visual inspection according to DIN 1076 [16] this 

bridge would have still passed the quality check. 

The “Champangshiehl bridge” is prestressed by 32 internal tendons with a parabolic course, 

whereby in the year 1987 further additional 8 external strands were added inside the box girder. 

The aim of the study was to study which damage level would lead to measurable deformation and 

to a stiffness reducing impact. Three different damage scenarios were planned: for scenario 1, 20 

tendons were cut at the bottom side of the cross-section in the mid of the bigger span length, for 

scenario 2, 8 tendons were cut on the top of the cross-section in the area of the middle support 

structure and for scenario 3, all 8 external tendons were cut inside the box girder. 

 

Figure 6 “Deutsche Bank bridge” (left) [11] and the “Champangshiehl bridge” (right) [12] 

The loading of 245 ton was achieved by 38 beam blanks of the steel production. The first 

damaging scenario generated an increase of the deflection of 48 % (12,09 mm) in the large field 

at the position of maximum bending moment whereas the second scenario did not lead to an 

increase, but even to a decrease of the deflection of about 1,92 mm. Here, a rearrangement of 

forces took place. Scenario 3 leaded to a deflection increase of about 20,47 m. 

In general, the tests on the two bridges showed that damaging affected their deformation 

behaviour. However, for damage scenario 2 of the “Champangshiehl bridge” nearly no impact on 

the defection and cracking could be observed.  

6 HIGH-PRECISE DEFLECTION MEASUREMENTS  

6.1 Laboratory tests 

In the previous experiments, the deflection line was always only measured at defined positions 

by levelling and inductive transducers. Not only that the deflection line is only represented by a 

polyline with some discrete measurement points, a main drawback of the inductive transducers is 

that they have to be fixed independently from the load bearing structure on a separate scaffold 

and thus, that they are also affected by strain variations due to temperature changes. 

As the application of the presented DAD-method needs high precision, new measurement 

techniques were tested in laboratory experiments to enable the measurement of a continuous 

deflection line over the whole structure length with high precision. Figure 7 presents two different 

experimental series realized on reinforced concrete beams. Due to the stepwise loading of the 

beams, the load-deformation curve were established by monitoring successively the uncracked 

phase, the first crack, the successive crack development and the yielding of the reinforcement 

until reaching the failure in the compression zone. The aim of the study is to increase the 

measurement accuracy of the deflection line to a precision, which allows the application of the 

DAD-method for damage detection and localization. In order to compare the measurement 
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accuracy of different measurement techniques several instruments like laser scanner, close-range 

photogrammetry, total station, levelling and displacement sensors were used. Under laboratory 

conditions the achieved accuracies were for the different measurement techniques the following: 

laser scanner about 3,0 mm, photogrammetry about 0,08 mm, total station about 0,25 mm, 

levelling about 0,06 mm and displacement sensors about 0,04 mm. 

 

 

Figure 7 Laboratory experiment setups, beam with cantilever (left) [13] and single span beam (right) [14] 

From the experimental tests, it can be concluded that under laboratory conditions the 

photogrammetry proved its applicability with a highly precise measurement of the deflection line. 

According to the state of the study, the photogrammetry has prevailed because of its convenient 

handling, reliable and high precise results. Figure 8 presents some results of the beam test for the 

application of the DAD-method using photogrammetry measurement data (left beam in Figure 7) 

[13]. On the left side, the detection of the cracked area at 35% of the failure load and on the right 

side the localization of the concrete failure in the compression zone at failure load can be 

identified.  
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Figure 8 Detection of the cracked area (left) and localization of the concrete failure in the compression zone 

(right), both applying the DAD-method [13] 

6.2 Real bridge test 

Both, the theoretical examples and the laboratory tests proved the ability of the DAD-method to 

identify and to localize stiffness reducing damage. In order to investigate the applicability of the 

method on a real scale bridge a further bridge experiment have been carried out in Altrier in 

September 2018 in Luxembourg (Figure 9) [17]. The bridge construction consists of a 30 m single 

span prestressed slab structure. The bridge is loaded by 6 heavy trucks with a weight of about 

33 tons. The deformation measurements were realised by a close-range photogrammetry and by 

using a large-size drone. The stability of the autonomous drone flight as well as the achievable 

accuracy were investigated. 
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Figure 9 Real bridge load deflection experiment [17]. 

7 CONCLUSION 

Both the dynamic excitation and static loading of bridge structures showed measurable structural 

responses when damage leaded to a reduction of the stiffness of the structures. However, the 

assessment of the condition of structures remains difficult when measurements are not compared 

to a reference. As a reference, initial measurements or results generated with a non-linear finite 

element model could serve. In particular, it could be shown that the asphalt layer, which is only 

considered as an additional weight on bridge structures at the design phase, significantly 

influences the load deflection behaviour and that its actual stiffness has to be taken into account 

for performing a reliable condition assessment. This influence, which depends mainly on the 

structure’s temperature, was demonstrated in loading tests realized within a climatic chamber and 

on a real scale bridge at different seasons. The laboratory test showed an 13 % influence of asphalt 

layer on deformation behaviour for a temperature decrease from 40°C to 20°C and 53 % for a 

temperature decrease of from 20°C to -10°C. In comparison, the both real bridge experiments in 

winter and in summer showed an asphalt layer influence of about 11 % for ΔT=35°C and 21 % for 

ΔT=14°C. 
The paper presents also a new so-called “Deformation Area Difference (DAD)” method. The 

requirement of the method is a static load deflection experiment providing the deflection line with 

high precision. As reference system, a simplified theoretical finite element model or 

measurements of the initial state of the bridge could serve. A theoretical example describes the 

background of the method. Further laboratory experiments for successful localization of cracked 

area as damage are also discussed. The stiffness reduction resulting from cracking amounted 

about 60 % and the maximum deflection of the beam did not exceeded the serviceability limit 

state. The requirement of high precise deflection measurements is investigated applying the most 

modern measurement techniques such as laser scanner, close-range photogrammetry, total station, 

levelling and displacement sensors. The achieved accuracies was for laser scanner 3,0 mm, for 

total station 0,25 mm, for photogrammetry 0,08 mm, for levelling 0,06 mm and for displacement 

sensors about 0,04 mm. Further developments with regard to the measurement technique led to 

the use of an autonomous flying drone to improve the handling of bridge surveying as many 

bridge structures are going over traffic roads, rivers, railways or slopes, wherefore the application 

of a drone would be very useful. 
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