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ABSTRACT: Structural health monitoring of bridges is a topic of research and development 

since long. Impressive progress has been achieved in the last decades, especially due to a rapid 

development of measurement and communication techniques as well as that of new theoretical 

methods. Some tasks like operational modal analysis (OMA) can already be solved very 

efficiently and reliably. Some others like local damage detection and localization are still a 

challenge both for research and application. 

 The present contribution is dedicated to some new techniques for structural health 

monitoring and its application to bridges. One method under consideration is based on the 

Hilbert-Huang Transform (HHT) which exhibits a good potential for the extraction of state 

parameters from vibration measurements under operation conditions. For example, the vibration 

decay after a truck passage can be used to extract important information on the bridge condition. 

The Hilbert transform combined with the Empirical Mode Decomposition by Huang allows the 

identification of the instantaneous vibration frequencies, phases and damping ratios for 

individual vibrations modes as well as their nonlinear changes due to the vibration amplitude 

and damage. The damping and nonlinear effects are known to be more sensitive to local damage 

than the fundamental frequencies. The monitoring of the same short-term parameters after each 

truck passage enables to develop a long-term monitoring strategy by use of regular time 

intervals in hours, days, weeks, months and years. By variation of the sensor location it is also 

possible to localize damage by use of HHT. 

 This contribution shows the application of the presented monitoring technique to a road 

bridge and a foot bridge in Berlin. 

1 HILBERT-HUANG-TRANSFORM 

The HHT is a method which is able to analyze a nonlinear or non-stationary signal by 

decomposing the signal with the help of the empirical mode decomposition (EMD) in so called 

intrinsic mode functions (IMF) followed by the application of the Hilbert Transform (HT) on 

those received IMFs. 

 On the following pages, both the theoretical background as well as two practical 

examples for the HHT will be displayed. At first the Hilbert transform and the extracted 

information from that will be explained and illustrated with a constructed example. After that 

the empirical mode decomposition and its use is demonstrated with real measurement data from 

a road bridge in Berlin. Finally, the detection of change in state parameters on a foot bridge in 

Berlin will be visualized. 
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1.1 Hilbert transform 

The Hilbert transform H of a signal x(t) is a linear operator which is given by convolution of x(t) 

with the function 1/(πt) as shown in Eq. 1 

𝐻(𝑥(𝑡)) =
1

π
⋅ ∫

𝑥(𝑡)

𝑡 − 𝜏
d𝜏

∞

−∞

 . (1) 

 

If x(t) is a real valued signal, the HT of x(t) results in the same real valued signal, whose phase 

is shifted by π/2 while its amplitudes are kept at the same level as before. 

 This is used to create a complex valued analytical signal a(t), in which the real part of 

the complex signal is the original signal x(t) and its imaginary part is the HT of x(t) as shown in 

Eq. 2 

𝑎(𝑡) = 𝑥(𝑡) + 𝑖 ⋅ 𝐻(𝑥(𝑡)) . (2) 

 

As a result it can be said, that as long as the HT of x(t) exists, an analytical signal a(t) can be 

created out of x(t). Analytical signals are well known and widely used in signal processing 

because they have special properties, which can be seen in Feldman (2011). 

 Let x(t) be a real valued decaying signal of a system with just one natural frequency. 

This signal is described by the following properties: 

𝑥(𝑡) = {
2 ⋅ 𝑒(−0,47⋅𝑡) ⋅ sin(2π𝑓1𝑡) 0s ≤ 𝑡 < 4s 𝑓1 = 10 Hz

0,72 ⋅ 𝑒(−0,97⋅𝑡) ⋅ sin(2π𝑓2𝑡) 4s ≤ 𝑡 ≤ 8s 𝑓2 = 10,3 Hz

 

. 

(3) 

At time 𝑡 = 4s, there is a new impact on the system resulting in a step in the amplitudes and a 

slight change in the natural frequency from 𝑓1 = 10 Hz to 𝑓2 = 10,3 Hz. After applying the HT 

on this non-stationary signal x(t), the associated analytical signal a(t) can be calculated and is 

depicted in Fig. 1. 

 

Figure 1. Analytical signal 𝑎(𝑡) = 𝑥(𝑡) + 𝑖 ⋅ 𝐻(𝑥(𝑡)). 
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Due to the phase shift of π/2 the imaginary part of a(t) lags behind its real part, which leads to 

the shown 3D spiral plot. More properties of the analytical signal can be extracted, while taking 

a closer look at the real-imaginary plane of a(t) shown in Fig. 2. 

  

Figure 2. Analytical signal in the real-
imaginary plane. 

Figure 3. Instantaneous vibration frequency. 

 

Every point of the complex function a(t) at time step t can be described by the instantaneous 

amplitude A(t) and its instantaneous phase 𝜙(t). Determining the numerical derivative of 𝜙(t) 

with respect to t yields the instantaneous frequency 𝑓𝑚(𝑡) which is shown in Eq.4 and 

visualized in Fig. 3. 

𝑓𝑚(𝑡) =
1

2𝜋
⋅

𝛥𝜙

𝛥𝑡
 (4) 

Not only the change in frequency at time 𝑡 = 4 s can be clearly observed but also the resolution 

in time- and frequency-domain is very high due to the fact that a(t) contains information of the 

phase at every time step t. This makes the HT a valid alternative to the short-time Fourier 

transform (STFT). The only problems are the edges of the signal where the HT cannot 

approximate the correct values of x(t). This leads to incorrect instantaneous frequencies in those 

areas, see Feldman (2011). 

1.2 Empirical mode decomposition 

In general, ambient vibration measurement signals of bridges contain responses of more than 

just one natural frequency of the bridge. Therefore, these signals need to be decomposed in 

signal parts yi(t), which consist of only one frequency component. The resulting intrinsic mode 

functions (IMF) are suitable for the HT to be applied on. The method used for the decomposing 

of the original signal is the empirical mode decomposition (EMD). 

 In the following, the EMD will be explained step by step. Let x(t) be a real valued signal 

consisting of more than one natural frequency. 

1. Determine the local extreme values of x(t). 

2. Construct an upper envelope function through the local maxima e+(t) and a lower 

envelope function through the local minima e-(t) with the help of cubic splines. 

3. Calculate the local mean m(t) at every time step t.  
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𝑚(𝑡) =
𝑒+(𝑡) + 𝑒−(𝑡)

2
 (5) 

4. Extract a preliminary IMF zj(t). 

𝑧𝑗(𝑡) = 𝑥(𝑡) − 𝑚(𝑡) (6) 

5. Check, whether zj(t) is a stable IMF with just one frequency component. If that is not 

the case, repeat steps 1-5. 

6. If zj(t) is a stable IMF, save it. 

𝑦𝑖(𝑡) = 𝑧𝑗(𝑡) (7) 

7. Subtract the found IMF yi(t) from the original signal x(t) to get a residual. 

𝑟𝑒𝑠(𝑡) = 𝑥(𝑡) − 𝑦𝑖(𝑡) (8) 

8. Set the residual res(t) as the next x(t) and repeat steps 1-7 on the residual until no more 

IMF exists, see Gonzales et al. (2014), Zeiler (2012). 

For better understanding, the application of the EMD is shown on real measurement data from a 

road bridge. This bridge is called Sieversbrücke, a reinforced pre-stressed concrete bridge with a 

length of 77,5 meters which spans over the Teltow Kanal in Berlin, as seen in Fig. 4 and 5. It 

has a gap in the middle which results in the independence of both roadways. 

  

Figure 4. Side view of the Sieversbrücke. Figure 5. Bottom view of the Sieversbrücke with 

cables and the gap between both roadways. 

The data was recorded with 3D geophones at the top of one of the roadways of the bride during 

a 30-minute session. For the demonstration of the EMD just one decaying signal of one of those 

geophones will be used. 

 The results of the EMD can be seen in Fig. 6. At first, the IMF 1 is extracted out of the 

original signal x(t). After that, the IMF will be subtracted from x(t). The residual after the first 

IMF now contains one frequency component less and it is chosen as the new starting point for 

the iterative algorithm of the EMD. It should be noted that the IMFs are extracted in order from 

the highest frequency to the lowest. 

 The algorithm of the EMD is easy to understand but contains some major difficulties 

e.g. mode-mixing, envelope creation, and edge problems of the signal, as described in Deering 

et al. (2005), Fosso et al. (2017), Rilling et al. (2006), Zeiler (2012). 
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Figure 6. EMD of a decaying signal from the Sieversbrücke. 

2 STATE PARAMETERS FOR SHM 
After extracting the IMFs from the signal there are mainly two global state parameters which 

can be determined. First, the application of the HT on the IMFs yields the instantaneous 

vibration frequencies of each IMF. These instantaneous frequencies correspond to the natural 

frequencies of the system as long as there are no periodic loads applied on the system. In Fig. 7, 

it can be seen that the natural frequencies of the bridge which were determined with classic 

OMA methods (Brincker et al. (2000)) overlay with the instantaneous vibration frequencies 

from the HHT for the first two modes. 

  

Figure 7. Comparison of natural frequencies from 
OMA with instantaneous vibration frequencies 
from HHT. 

Figure 8. Modal damping ratio of the first bending 

mode from the Sieversbrücke. 
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Only the third frequency component shows larger differences. This frequency corresponds to 

the IMF 2 which has not been stimulated by the ambient load as seen in Fig. 6. Consequently, if 

an IMF is extracted from the signal while its corresponding natural frequency is not stimulated 

by the load the HHT can lead to false identified natural frequencies. 

 Thus, the first state parameter which can be monitored with the help of HHT is the 

possible change of the natural frequencies over time if these frequency components are 

stimulated by the load. 

 The second state parameter is the modal damping ratio. If the measured signal is a 

decaying signal as in Fig. 6 the IMFs show the vibration decay of the system for each natural 

frequency, individually. With the help of classic OMA methods like the Frequency Domain 

Decomposition (FDD) the corresponding natural modes can be determined. In conclusion, the 

modal damping ratio for each natural mode can be extracted from the IMFs with the logarithmic 

decrement as long as those IMFs have the characteristic decaying behavior from the original 

signal. 

 The modal damping ratio for the first bending mode of the Sieversbrücke is depicted in 

Fig. 8. It was extracted out of 35 IMFs with the corresponding natural frequency of 𝑓1 =
3,13 Hz. The results were fitted by a Gaussian distribution which leads to a mean value for the 

damping ratio of 𝜉𝑚𝑒𝑎𝑛 = 2,09 %. In comparison, the damping ratio for the first bending mode 

determined by the FDD has exactly the same value. 

 An advantage of the modal damping ratio in comparison to the natural frequency is its 

sensitivity to a local change in the system which will be shown in the next example. Moreover, 

with the HHT the modal damping ratio can be determined with respect to time and amplitude of 

the signal which can lead to the discovery of nonlinearities. 

 Local state parameters can be extracted by pointwise strain-measurements, which will 

not be a topic in this paper. 

3 PRACTICAL EXAMPLE: VOLKSPARKSTEG 

The object of interest is a cable-supported steel bridge with a length of 68,7 meters. This foot 

bridge is called Volksparksteg and it is located in Berlin, Wilmersdorf. It consists of two 

longitudinal hollow rectangle beams which are connected by crossbeams. The bridge is 

supported by a pylon and supports at both ends, as shown in Fig. 9 and 10. 

 Again, the data was recorded with ten 3D geophones during a three-hour session. 

Different load scenarios were tested but in this paper only the signals after single impact loads 

will be discussed due to the decaying characteristic of those occurring signals. 

  

Figure 9. Volksparksteg. Figure 10. Static system of the Volksparksteg. 
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Figure 11. First and third bending mode at 𝑓1 =
2,15 Hz and 𝑓2 = 8,50 Hz determined by FDD. 

Figure 12. Instantaneous frequencies determined 

by HHT. 

First, single impact loads at points 1, 2, and 3 (see Fig. 10) were used for the determination of 

the stimulated natural modes and frequencies with the FDD (see Fig. 11). Thereafter, the HHT 

was used on the same signals to calculate the instantaneous frequencies which are shown in Fig. 

12. Both, the FDD and the HHT deliver the same results in regard to the natural frequencies. It 

should be noted, that the amplitudes of the third bending mode at 𝑓2 = 8,50 Hz lie within the 

range of measurement noise. As a result of that, the damping ratio can only be determined for 

the first bending mode. 

 Another goal of this algorithm is to detect changes in the state parameters. Therefore, an 

extra mass 𝑚 ≅ 1 … 1,5 t has been applied on different spots of the bridge to see if the natural 

frequencies and modal damping ratios are sensitive to this change. This mass will lead to pre-

deformations, other stress levels in the cables and thus to a change in the system. 

 In the first load scenario the extra mass is put on point 2 (see Fig. 10). At this location 

the mass influences the first and third bending mode directly. The results of the natural 

frequencies and the modal damping ratio of the first bending mode are shown in Fig. 13 and 

Fig. 14. Both, the frequencies and the damping ratio changed after applying the mass. 

Moreover, the second natural frequency scatters around the correct value. An explanation for 

this could be that the mass pushes the system into the first bending mode already. Thus, the 

third mode is not activated properly, which is why this frequency cannot be extracted perfectly. 

  

Figure 13. Instantaneous frequencies           
𝑓1 = 2,06 Hz and 𝑓2 = 8,32 Hz. 

Figure 14. Modal damping ratio for the first bending 

mode with mass at point 2 and without mass. 
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Figure 15. Instantaneous frequencies           
𝑓1 = 2,15 Hz and 𝑓2 = 8,42 Hz. 

Figure 16. Modal damping ratio for the first bending 

mode with mass at point 4 and without mass. 

In the second load case the extra mass is applied on point 4 (see Fig. 10). This will not influence 

the first and third bending mode directly since the amplitudes of motion of point 4 are very 

small in those modes (see Fig. 11). Nevertheless, a change in the damping ratio of the first 

bending mode can be observed as shown in Fig. 16 even though this change has not been in the 

same spot than the measurement sensors. Although there is a change in the damping ratio, the 

natural frequencies stay at the same level. 

 This leads to the assumption that the modal damping ratio is more sensitive to a change 

in the system than the natural frequencies. 

4 CONCLUSIONS 

In this paper, the theoretical background of the HHT has been explained and its application has 

been illustrated on two practical examples. The HHT yields instantaneous frequencies and 

modal damping ratios with respect to time or amplitude which are more sensitive to changes in 

the system than the averaged modal properties extracted by the methods of OMA. Furthermore, 

a system change in the foot bridge as a consequence of the extra mass could be detected. 

 Thus, the HHT has great potential in the detection of system change. Moreover, it 

provides new possibilities for a permanent structure health monitoring system due to the fact 

that just a few sensors are needed to provide good data. 
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