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ABSTRACT: Obtaining reliable and precise response measurements of structures subjected to 
loading is important, especially when assessing their conditions and deriving load-response 
relationship. A range of contact sensors can collect both structural response and applied loads. 
When considering beam structures such as girder bridges a control load (a truck of a known 
weight) can be applied and response can be measured. Developments in digital cameras and image 
processing enable collection of structural deformations using vision-based technologies, which 
do not require access to the structure, are non-destructive and low cost. Measurement accuracy 
largely depends on the image resolution and processing algorithm. When capturing an entire 
structure in a single image frame, it is unlikely that structural response at multiple locations can 
be measured accurately. This study proposes to create super-resolution images by stitching high-
resolution images, from which accurate structural response is obtained. A robotic camera which 
is programmed to capture images and rotate along its vertical axis is developed. Initially the 
accuracy of image stitching is investigated using laboratory beam. The robotic camera captures 
images at different distances to the structure and zooms. Deformations of a laboratory beam 
subjected to static loading are then obtained using the robotic camera, smartphone and contact 
sensors. The results show that the accuracy of measurements collected with the robotic camera 
system is in a good agreement with the contact sensors and much higher than those obtained with 
a smartphone camera.  

1 INTRODUCTION 

Effective monitoring and maintenance of civil structures are important, especially for bridges. 
Morandi bridge collapse, which took the lives of 43 people, in Italy is a recent example 
emphasizing the need for a robust bridge monitoring and inspection (O’Reilly et al., 2018). In the 
UK, general (or visual) bridge inspections are carried out every 24 months (Department for 
Transport, 2017). Inspections are subjective and depend on inspectors’ decisions, which may have 
human error. Visual inspections are labour intensive and sometimes disruptive (Jahanshahi et al., 
2011). 

Non-destructive techniques could enhance the general bridge inspection. Contact sensors like 
accelerometers, strain gauges, linear variable differential transducer (LVDT) are increasingly 
used in bridge monitoring. Their advantages are limited due to cumbersome and expensive 
installations and requirements of numerous sensors to monitor structures (Feng and Feng, 2018). 
Vision-based monitoring systems are non-contact techniques and measure structural response 
such as deflections. These systems pose promising advantages over contact sensors. For example, 
vision-based sensors can be found at low-cost, are non-destructive, offer measurement collection 
of multiple targets, and have a simple instrumentation and installation (Xu and Brownjohn, 2018). 
Vision-based systems measure displacements of targets (structural features) such as bolts (Feng 
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and Feng, 2018) when structures are subjected to loading. Structural response such as vertical and 
horizontal deflections at target locations and strains are measured from displacements of targets 
(Brownjohn et al., 2017).  

Vision-based systems consist of hardware component for image collection and image processing 
algorithms for calculations of structural response. The response is analyzed for structural 
performance. Vision-based monitoring systems have been validated in both laboratory 
experiments and field. For example, Kromanis et al. (2019) have demonstrated the capability of 
low-cost vision-based systems in various laboratory environments using smartphones. Successful 
field applications are seen in pedestrian bridges (Feng et al., 2015; Shariati and Schumacher, 
2017) and railway bridges (Pan et al., 2016; Ribeiro et al., 2014). The robustness of vision-based 
systems depends on the quality of the images and the algorithm.  

Image quality is sensitive to field conditions like illumination and background disturbance. It is, 
therefore, pivotal to ensure prudent camera setup to accurately collect image frames, hence 
improving the quality and output of feature tracking (Feng and Feng, 2016). Super-resolution 
images (SRIs) are high-quality images that can deliver robust data. The reconstruction of SRIs is 
the method of producing high-resolution images from a set of low-resolution images (Hu et al., 
2009). Brown et al. (2007) indicate the potential of image stitching in creating super-resolution 
images. Jahanshahi et al. (2011) have used image stitching to reconstruct the stages of damage 
evolution in a structure and enable inspectors to visually identify damage by comparing stitched 
current image to the baseline image. Akbar et al. (2019) have demonstrated image stitching to 
improve the robustness of images taken by unmanned aerial vehicles and identify changes in 
features. Image stitching may have the potential for monitoring whole structures by capturing the 
entire structure with a single camera. However, the use of image stitching in vision-based 
monitoring is mostly confined to feature recognition. Capabilities of feature tracking of structures 
under load from SRIs have not yet been investigated.  

This study proposes to improve the measurement collection accuracy by generating and analysing 
SRIs. A robotic camera is developed to collect images of parts of the laboratory test-bed. The 
images are stitched to produce SRIs. SRIs are validated at no load condition by comparing 
distance between known structural features that are drawn on its surface. The accuracy of the 
proposed measurement collection technique is analysed by comparing vertical deformations 
collected by contact sensors and calculated from SRIs, when the test-bed is subjected to known 
loads.  

2 METHODOLOGY 

Figure 1 shows a framework of the generation and analysis of SRIs for accurate measurement 
collection. A robotic camera with a zoom lens captures images of parts of the structure at no load 
conditions and when the structure is subjected to known loads. Images are stitched generating 
SRIs, which are then analyzed to obtain structural deformations. The proposed robotic camera 
system, image stitching and image processing for measuring response are discussed in the 
subsequent sections. 
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Figure 1. Response measurement collection approach using SRIs. 

2.1 Robotic camera development 
Images of parts of a structure are needed to generate a SRI of the structure or part of the structure 
under monitoring. A robotic camera system which rotates the camera, recording visual 
information of the structure, along its vertical axis is proposed. The camera system can either 
collect videos or photos. Moving images (from a video) might have motion effect unless collected 
at a very high frame rate, which in turn, makes video files large and stitching computationally 
expensive. Therefore, we consider capturing still images instead. After a set of images of a 
structure is collected, the camera returns to its starting point ready to repeat the cycle.  

A prototype for the robotic camera system has been built using a NEMA17 stepper motor fitted 
with a 5.18:1 ratio gearbox. This is then connected to a laptop via a USB stepper motor controller 
device. Positioning control is done via a Python script. A GoPro camera that has been custom 
fitted with a zoom lens is used and controlled via a Wi-Fi connection and Python scripting. Power 
for the system is supplied from battery packs to allow for portability of the setup. The robotic 
camera system is then mounted to a standard camera tripod, set to the correct height, and levelled. 
The robotic camera system works from a single Python script using the steps shown in Figure 2. 

 
Figure 2. Python Script Steps 

 
Figure 3. Robotic camera system: model (left) and photo (right). 
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2.2 Image collection and stitching 

The image stitching is the most important part in the generation of SRIs. Each stitched image is 
recommended to have about 50% image overlap and a sufficient number of common features 
(Jahanshahi et al., 2011). The main steps involved in image stitching are (in order); image 
matching, SIFT feature matching, RANSAC homography estimations, bundle adjustment, gain 
compensation, and multi-band blending. In this study, AutoSitch software developed by (Brown 
and Lowe, 2007) is employed to generate SRIs. 

2.3 Structural deformations 

Structural deformations from image frames are extracted when selecting an object of interest or 
target in a region of interest (ROI). Mathematical features of a target, which are surface features 
either natural or artificially drawn, are calculated using a suitable feature detection algorithm such 
as Harris (Harris and Stephens, 2013) for corners. The target is then sought in consecutive images 
and its location in global image coordinates (𝑥𝑥,𝑦𝑦) is the arithmetic average of individual feature 
coordinates. The image coordinates are transformed to a user’s defined plane using the planar 
homography approach (Kromanis and Liang, 2018). Displacements of targets are now available 
in engineering units.  

3 VALIDATION OF IMAGE STITCHING 

The image stitching is validated on a timber beam with artificial surface features (blobs or circular 
objects) drawn on its surface. The setup of the simply supported beam is shown in Figure 4. On 
both supports a pattern with rectangular shape elements of known dimensions is attached. The 
coordinates of corners in the pattern are control points for image transformation. Aruco codes are 
attached to the surface of the beam to aid image stitching. A modified GoPro camera with an 
adjustable lens of 25 to 135 mm focal length shown in Figure 3 is used in the study. Eight 
configurations of the robotic camera system (𝐶𝐶𝑑𝑑,𝑧𝑧, where 𝑑𝑑 is the camera distance to the beam and 
𝑧𝑧 is the focal length of the lens), which are considered for the validation of image stitching, are 
listed in Table 1. 𝐶𝐶3𝑚𝑚,37𝑚𝑚𝑚𝑚 indicates that the camera system is set 3 m away from the beam and 
the focal length is 37 mm. In addition to the robotic camera system, a Samsung S9 smartphone, 
which is set 1 m from the beam, is employed. An image taken with it is shown in Figure 5 (a). 
Five displacement sensors (𝐷𝐷𝐷𝐷, where 𝑖𝑖 = 1,2, … ,5) are installed above the beam. Displacement 
values are used in the next section. 

 
Figure 4. Laboratory test setup. 



   

5 

 

The steps involved in the evaluation of SRI accuracy are:  

• locating and classifying blobs: Blobs are automatically detected and grouped in three 
rows: top, middle and bottom, according to their location on the beam.  

• performing matrix transformation: Transfer blob locations (coordinates) from pixel to 
real-world units. 

• computation of stitching error (𝑒𝑒): 𝑒𝑒 is the mean of root mean square errors (RMSEs) 
between theoretical and calculated distances between two consecutive targets computed 
for each pair of blobs in each row of blobs.  

The number of images captured in a single camera run depends on the selected focal length and 
the image overlap. Larger the focal length is, larger is the number of images needed to capture 
the length of the beam. Larger focal length provides more pixels to cover the depth of the beam. 
Depending on the camera distance to the beam AutoStich offers very high quality stitching. A 
close view at a part of the beam as captured with 𝐶𝐶9𝑚𝑚,135𝑚𝑚𝑚𝑚  is shown in Figure 5 (d). However, 
not all images stitched. 𝐶𝐶3𝑚𝑚,115𝑚𝑚𝑚𝑚 and 𝐶𝐶6𝑚𝑚,135𝑚𝑚𝑚𝑚 did not stitch or stitched poorly (see Figure 5 
(b)). Blobs are automatically located in SRIs (see Figure 5 (c)). 𝑒𝑒 values for each 𝐶𝐶 scenario are 
provided in Table 1. The smallest stitching error is when the camera is set 9 m away from the 
beam.  

Blobs are manually drawn on the surface of the beam. Though all measures are taken to achieve 
high accuracy in the drawing process using a printed template, not all blobs are perfect circles. 
The drawing error is not considered in this study. It is also very difficult to find the actual center 
of the blob without considering photogrammetry.   

 
Figure 5. Laboratory setup captured with a smartphone (a). Poorly stitched SRI (b). A SRI with identified 
blobs (a white circle is drawn around each blob) (c). A close view of a part of the beam with an Aruco code 
and two blobs (d). 
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Table 1. Image stitching validation result summary 

Camera 
configuration (𝐶𝐶) 

Number 
of images Image size (px) Beam depth (px)  

Stitching error (𝑒𝑒) 
(px)  

Smartphone 1 2268x4032 153 1.15 
𝐶𝐶3𝑚𝑚,37𝑚𝑚𝑚𝑚  8 3012x16101 563 0.21 
𝐶𝐶3𝑚𝑚,86𝑚𝑚𝑚𝑚  14 3164x28115 1020 0.25 
𝐶𝐶3𝑚𝑚,115𝑚𝑚𝑚𝑚  20 Did not stitch - - 
𝐶𝐶6𝑚𝑚,74𝑚𝑚𝑚𝑚  6 3206x14117 442 0.10 
𝐶𝐶6𝑚𝑚,98𝑚𝑚𝑚𝑚  14 3292x17968 609 0.12 
𝐶𝐶6𝑚𝑚,135𝑚𝑚𝑚𝑚  21 Did not stitch - - 
𝐶𝐶9𝑚𝑚,110𝑚𝑚𝑚𝑚  9 3189x13571 510 0.06 
𝐶𝐶9𝑚𝑚,135𝑚𝑚𝑚𝑚  10 3189x20462 781 0.07 

4 EXPERIMENTAL STUDY 

The validation of image stitching shows that minimum 𝑒𝑒 is when camera is located 9 m away 
from the beam. 𝑒𝑒 for 𝐶𝐶9𝑚𝑚,135𝑚𝑚𝑚𝑚 is slightly larger than 𝑒𝑒 for 𝐶𝐶9𝑚𝑚,110𝑚𝑚𝑚𝑚, however the number of 
pixels covering the depth of the beam is 1.5 times higher for 𝐶𝐶9𝑚𝑚,135𝑚𝑚𝑚𝑚. Therefore 𝐶𝐶9𝑚𝑚,135𝑚𝑚𝑚𝑚 is 
selected to evaluate the performance of image stitching for accurate measurement collection.  

A point load (𝐿𝐿𝑖𝑖, where 𝑖𝑖 = 5𝑁𝑁, 15𝑁𝑁, 35𝑁𝑁, 85𝑁𝑁) is applied at the center of the beam (see Figure 
4). A SRI is created at each load. AutoStitch provides limited control over the stitching process, 
therefore SRIs are not uniform size. Besides, approximately 5 pixel shift is observed after the 
robotic camera completes a run. These issues require additional image processing steps before 
deformations at target locations can be measured: 

(1) coordinates of the pattern at the left support and the housing of displacement sensors are 
set as known points. The pattern at the right support is not considered. The right support 
is anticipated to move left when loads are applied. 

(2) the points are located in each SRI and then used to generate a transformation matrix. 

(3) coordinates of five targets, blobs under sensor locations, are extracted from SRIs and 
transformed to the coordinate system defined in step (2). Targets (𝑇𝑇𝑇𝑇, where 𝑖𝑖 = 1,2, … ,5) 
are named according to displacement sensor (𝐷𝐷) locations (see Figure 3).  

Locations of targets in both images collected with smartphone and SRIs during the load test are 
obtained using DeforMonit (Kromanis et al., 2019). A user specifies a ROI in which a target is 
located. The location of the target is computed as follows: (i) convert the image with ROI from 
color to grayscale, (ii) adjust image (sharpen, brighten, increase size), (iii) convert adjusted image 
to a binary image (black and white), (iv) draw the best fit ellipse around the blob (v) and output 
coordinates of the center of the ellipse. As an example, vertical deflections at D2 location obtained 
with all measurement collection approaches at four loads are given in Figure 6 (left). RMSE 
between robotic camera and displacement sensors and smartphone and displacement sensors are 
plotted in Figure 6 (right). RMSE values confirm that the proposed measurement collection 
approach using SRIs outperforms the conventional vision-based measurement collection 
approach. 
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Figure 6. Vertical deflection at D2 location (left) and RMSE between vision-based technologies and contact 
sensors. 

4.1 Discussion 

The robustness of the proposed approach relies on accuracy of (a) the robotic camera, (b) image 
stitching, (c) target tracking, and (d) planar homography. The camera rotation error requires 
adjustments of calculated target locations, which is made more complicated, when detecting that 
consecutively captured SRIs have a slight stitching error. This can be fixed following the steps 
provided in this section, however, ideally such errors should not occur. Measurement errors could 
be reduced by improving or changing the image stitching technique. The technique could be 
tailored to specific task such as stitch images horizontally and refer to the first SRI image.  

5 CONCLUSIONS  

This study introduces a new approach for collecting accurate structural deformations using super-
resolution images (SRIs). A robotic camera captures still images of parts of the structure at no 
load and subjected to static loads. Images are stitched creating SRIs, which are analyzed with 
image processing tools to obtain high accuracy structural response. This study draws the 
following conclusions: 

• Overall the developed robotic camera system shown in Figure 3 performs well. The 
robotic camera has a small rotation error, which is around 5 pixels, when the camera is 
set 9 m away from the beam.   

• Accurate SRIs can be created using AutoStitch application. However the control over the 
image stitching process is limited resulting in stitching errors when generating SRIs. 

• Structural response at target locations computed using the proposed image stitching 
approach with SRIs is more accurate in comparison to the response collected from a 
single image frame. 

Freeware (open source software) such as DeforMonit (employed in this study) can be used to 
obtain reliable deformations of structures. Their availability and capability to measure accurately 
deformations of structures make them an attractive alternative to commercial software. Besides, 
SRIs offer even higher level of accuracy in comparison to single frame images. The superior 
quality of images generated with a robotic camera system can provide useful information of the 
material surface, which, for example, could be analyzed for cracks in steel and concrete structures.  
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