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ABSTRACT: Due to the inherent brittleness, catastrophic collapse and damage of masonry 

structures can occur abruptly when the load-carrying capacity is exceeded.  Failure of masonry 

structures in earthquakes and other extreme loading has been a major concern for the structural 

designers.  Robust design of the structure relies on the accuracy of the structural response analysis 

under different loading conditions.  Macroscopic strut-and-tie models and simplified continuum 

models are often used but they may not be able to simulate the detailed structural damage and the 

progressive collapse of the masonry structures.  To this regards, a new and robust interfacial 

constitutive law, which couples the damage and plastic deformation with fracture energy-based 

softening rules, has been developed for the discrete finite element modelling (DFEM) of masonry 

structures.  The model has 14 required parameters and the proposed model can successfully 

simulate a variety of mechanical behaviour of masonry structures including the pressure-

dependent strength and fracture, wearing-off of the friction, dilatation behaviour, stiffness 

degradation, shear retention, and disintegration of the components.  Several experiments on the 

masonry were simulated and good agreements between the simulated and experimental results 

could be observed.  Comparing to the conventional microscopic models, the DFEM with the 

coupled damage-plasticity interfacial constitutive law can significantly simply the meshing work 

and the control of the mesh quality.  Hence, the proposed model can be a practical tool for reliable 

failure and collapse analysis of masonry structures. 

1 INTRODUCTION 

A large number of existing residential, as well as historical buildings around the world, comprises 

of unreinforced masonry.  Many of these structures are located on high seismic zones and have 

subsequently been affected by earthquake resulting in huge destruction (Zhang et al. 2017).  The 

collapse of masonry structures during earthquakes and other extreme loading can jeopardize the 

structural safety and pose a grave threat to the occupants and property.  Accurate and reliable 

analysis of the load-deformation behaviour of masonry under different types of loading is 

inarguably the most crucial step to guarantee a robust design of the masonry structures or 

buildings with masonry infill panels.  

To this regard, this paper presents a new coupled damage-plasticity traction-separation law which 

is to be used with discrete finite element modelling (DFEM) of masonry structures which is able 

to simulate the structural collapse due to the disintegration of the components.  The proposed 

model can simulate a variety of mechanical behaviour of masonry structures including the 

pressure-dependent strength and fracture, wearing off of the friction, dilation behaviour, stiffness 

degradation, shear retention, the disintegration of the components under different types of loading.  
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The calibration methods of all model parameters using common test data and physical rules are 

also provided in details.  Simulations of various tests on masonry joints and a real scale masonry 

structure were then performed to validate the model performances. 

2 MODEL DEVELOPMENT 

2.1 Traction-separation law 

An emerging novel modelling approach of masonry structures is the use of contact-interaction 

with discrete finite element modelling (DFEM) as illustrated in Figure 1. In DFEM, the masonry 

units are treated as individual deformable bodies, i.e. discrete elements that can be separated by a 

finite gap.  The meshes of the masonry units are not necessary to be connected.  No interfacial 

elements exist between the masonry units to model the mortar joints and the mechanic responses 

of the mortar joints are modelled as the interaction between the masonry units using the interfacial 

contact law.  The general three-dimensional traction-separation law for the interfacical interaction 

reads as follows: 

[

σ𝑛

𝜏1

𝜏2

] = [

𝑘𝑛 0 0
0 𝑘𝑠1 0
0 0 𝑘𝑠2

] [

𝛿𝑛
𝑒

𝛿𝑠1
𝑒

𝛿𝑠2
𝑒

]  or  𝛔 = 𝐤𝒆 ∙ 𝛅𝑒   (1) 

 

where 𝛅𝑒 = 𝛅 − 𝛅𝒑 is the elastic displacement of the total displacement vector 𝛅 in which 𝛅𝒑 is 

the plastic displacement;  𝛔 is the traction vector of the normal traction σ𝑛 (corresponding to the 

normal displacement 𝑑𝑛
𝑒) and the shear tractions in two perpendicular horizontal directions 𝜏1 and 

𝜏2 (corresponding to the shear displacements 𝑠1
𝑒 and 𝑠2

𝑒 respectively); 𝐤𝒆 is the effective elastic 

stiffness matrix.   

 
Figure 1. Discrete finite element modelling of masonry structures. 

 

2.2 Inelastic deformation 

Masonry walls are normally under vertical compression due to the self-weight and overburden 

loads.  Horizontal loads such as earthquake and wind induce lateral shear and bending, which 

combine with the vertical compression to cause various stress states in different locations of the 
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walls.  Hence, shear cracking caused by the combined shear and compressive stresses or flexural 

cracking caused by the tensile stress can be observed in the damaged masonry walls.  The 

combined Mohr-Coulomb and tension-cut-off criteria are commonly used for modelling such 

fracture behaviour.  Yet, the non-smooth intersections of the two criteria are not differentiable 

that can cause problems in computing the plastic flow numerically.  A hyperbolic surface that is 

continuous and differentiable everywhere can approximate the combined Mohr-Coulomb and 

tension cut-off surface (Lotfi and Benson 1994).  The hyperbolic yield surface for the mortar joint 

interfaces can be expressed as  

𝐹 = √𝛼2 + 𝜏1
2 + 𝜏2

2 + σ𝑛 tan𝜙 − 𝛽 = 0 (2) 

where tan𝜙, resembling the friction coefficient in the Mohr-Coulomb criterion, is the slope of 

the asymptotes of the hyperbolic surface; variables 𝛼  and 𝛽  can be correlated to the tensile 

resistance σ𝑛 = 𝑓t   when 𝜏1 = 𝜏2 = 0  and the shear cohesion 𝜏1
2 + 𝜏2

2 = 𝑐2  when σ𝑛 = 0  by 

using Eq. (2)  

 𝑐 = √𝛽2 − 𝛼2;       𝑓𝑡  =
𝛽−𝛼

𝑡𝑎𝑛𝜙
   (3) 

Hence, the evolution of the yield surface of Eq. (4) is controlled by internal variables 𝜙, 𝑐, and 

𝑓t.  It can be noted from Eq. (3) that the shear cohesion and tensile resistance are exhausted (i.e.  

𝑐 = 𝑓t = 0) at the instant when 𝛼 = 𝛽 = 0.  Afterward, the plastic dissipation of the mortar is 

only governed by the friction process depending on the friction coefficient tan𝜙.  Based on the 

assumptions by  Lotfi and Shing (1994) the tensile softening rule by Stankowski (1992), the 

plastic-work softening rules can be applied for the internal variables as 

𝑓𝑡  =  𝑓𝑡0 (1 −
𝑤𝐼

𝐺𝐼𝐶
−

𝑤𝐼𝐼

𝐺𝐼𝐼𝐶
) ≥ 0   (4) 

𝑐 =  𝑐𝑡0 (1 −
𝑤𝐼

𝐺𝐼𝐶
−

𝑤𝐼𝐼

𝐺𝐼𝐼𝐶
) ≥ 0   (5) 

𝑡𝑎𝑛 𝜙 = 𝑡𝑎𝑛 𝜙𝑟 + (𝑡𝑎𝑛 𝜙0 − 𝑡𝑎𝑛 𝜙𝑟)𝑒
−𝑚𝑤𝐼𝐼𝐼  (6) 

where 𝑓t0 and 𝑐t0 are the initial tensile resistance and shear cohesion  respectively; 𝜙0 and 𝜙r are 

the initial and residual friction angles respectively.  𝐺𝐼𝐶  and 𝐺𝐼𝐼𝐶  are the mode I and mode II 

fracture energy respectively. 𝑚 is a model constant.  Inelastic work variables 𝑤𝐼, 𝑤𝐼𝐼, and 𝑤𝐼𝐼𝐼 

are defined as 

𝑤𝐼  =  ∫〈𝜎𝑛〉 𝛿̇𝑛
𝑖𝑛𝑑𝑡 (7) 

𝑤𝐼𝐼  =  ∫(|𝜏| − 〈−𝜎𝑛〉 𝑡𝑎𝑛 𝜙) 𝛿̇𝑠
𝑖𝑛𝑑𝑡 (8) 

𝑤𝐼𝐼𝐼 = ∫〈−𝜎𝑛〉|𝑡𝑎𝑛𝜙 − 𝑡𝑎𝑛𝜙𝑟| 𝛿̇𝑠
𝑖𝑛𝑑𝑡 (9) 

in which 𝛿𝑛
𝑖𝑛  is the total inelastic normal displacement,  |𝜏| = √𝜏1

2 + 𝜏2
2  and 𝛿𝑠

𝑖𝑛 =

√(𝛿𝑠1
𝑖𝑛)

2
+ (𝛿𝑠2

𝑖𝑛)
2

 are the resultant shear stress and total inelastic shear displacement 

respectively; 〈∙〉 is the Macauley brackets defined as 〈𝐴〉 = (𝐴 + |𝐴|)/2.  Eqs. (7) and (8) are the 

energy dissipations related to the mode I and mode II fractures.  Eq. (9) is the energy dissipation 

due to the degradation of the friction coefficient.  The total inelastic displacement 𝛅𝑖𝑛 comprises 

the plastic displacement 𝛅𝑝 and the crack opening/sliding 𝛅𝑐𝑟, i.e. 𝛅𝑖𝑛 = 𝛅𝑝 + 𝛅𝑐𝑟.  

For frictional materials, non-associated flow rule, i.e. the plastic flow direction is not normal to 

the yield surface, often assumed to avoid excessive plastic dilation (plastic volume strain induced 
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by plastic shear strain).  To model this plastic deformation behaviour, the following flow rule is 

assumed: 

  𝐺 = √𝜏1
2 + 𝜏2

2 + 𝜎𝑛 𝑡𝑎𝑛 𝜓 = 0 (10) 

The evolution of the dilation angle 𝜓 in Eq. (10) is taken as the same as that of the friction angle 

(Eq. (6)) with a different constant 𝑛 controlling the decay rate. 

 

2.3 Stiffness degradation 

The macroscopic stiffness of the mortar joints will be degraded with the increase of the crack 

opening and the accumulated inelastic deformation.  This is due to the reduction of the contact 

area of the asperities or effective loading area which can be characterised by damage variables 𝑑.  

Then, to model the stiffness degradation behaviour, the concept of effective stress 𝛔 in damage 

mechanics (Voyiadjis and Kattan 2005) can be used  

𝝈 = 𝑴(𝑑) ∙ 𝝈 (11) 

where 𝛔  is the Cauchy stress tensor;  𝐌 is the second-order damage effective tensor.  While the 

mechanic behaviour of the undamaged part of the material may be still described by the yield 

criterion Eq.(2) and the plastic flow potential Eq.(10)  presented in the last section but with the 

stress (traction) vector replaced by the effect stress (traction) vector 𝛔, the damage part is assumed 

stress-free.  Based on the hypothesis of strain equivalence, the effective elastic stiffness 𝐤𝒆 in Eq. 

(1) can be defined as 

𝒌𝒆 = 𝑴(𝑑) ∙ 𝒌𝒆 ∙ 𝑴(𝑑) (12) 

in which 𝐤𝒆  is the initial stiffness of the undamaged mortar joints. To model the stiffness 

degradation of the mortar joints, the damage tensor 𝐌 is assumed as  

𝑴(𝑑) =

[
 
 
 
 (1 − 𝑑𝑛𝐻(𝜎𝑛))

1/2
0 0

0 (1 − 𝑑𝑠𝐻(𝜎𝑛))
1/2

0

0 0 (1 − 𝑑𝑠𝐻(𝜎𝑛))
1/2

]
 
 
 
 

 (13) 

where 𝑑𝑛 and 𝑑𝑠  are the damage variables with values within [0, 1] corresponding to the normal 

and tangential (shear) stiffness receptively.  The factor (1 − 𝑑𝑠) is analogous to the classic shear 

retention factor used for modelling the shear stiffness degradation of fractured brittle materials 

(Chen 1982).  H(𝜎𝑛) = 1 for 𝜎𝑛 > 0 and H(𝜎𝑛) = 0 for 𝜎𝑛 ≤ 0, which is used to account for the 

unilateral effect (stiffness recovery) upon the crack closure.  A linear transformation between the 

crack opening and the equivalent plastic displacement, δ𝑝 = √δ𝑛
𝑝2

+ δ𝑠1
𝑝 2

+ δ𝑠2
𝑝 2

 , is assumed as 

follows: 

𝜹̇𝒄𝒓 = 𝒃 ∙ 𝜹̇𝒑𝒊 ̅ (14) 

where  𝐛 = diag[𝑏𝑛 𝑏𝑠 𝑏𝑠]   is a diagonal matrix of constant parameters and 𝒊̅ =
[𝑑𝛿𝑛 𝑑𝛿𝑠1 𝑑𝛿𝑠2]

T/|δ̇|  is the unit direction vector of the displacement increment.  The 

relationships among the effective elastic displacement 𝛅̅𝑒 , plastic displacement 𝛅𝑝 , and crack 

opening 𝛅𝑐𝑟, the damage tensor 𝐌(𝑑) can be correlated to the plastic and the total displacement 

by  

𝑰 − 𝑴𝟐 = 𝒃 ∙ 𝜹𝒑 ∙ (𝜹 − 𝜹𝒑)−𝟏  (15) 
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in which 𝐈  is the identity matrix.    

2.4 Incremental form 

To implement the coupled damage-plasticity traction-separation model in general FE codes, an 

incremental form of the constitutive relationship shall be established.  The incremental form of 

Eq. (1) can be rewritten as    

𝜟𝝈 = 𝒌𝒆 ∙ (𝜟𝜹 − 𝜟𝜹𝒑 ) + 𝜹𝒆 ∙ (
𝝏𝒌𝒆

𝝏𝒅𝒑 ∙ 𝜟𝜹𝒑)   (16) 

The plastic displacement increment and the crack displacement increment are 

𝜟𝜹𝒑  = 𝜟𝝀
𝝏𝑮

𝝏𝝈
;  𝜟𝜹𝒄𝒓  = 𝜟𝝀𝒃 ∙

𝝏𝑮

𝝏𝝈
 (17) 

The plastic multiplier increment Δλ is determined by the consistency condition.  Hence, the plastic 

displacement increment can be expressed as 

𝜟𝜹𝒑  = (
(𝝏𝑭/𝝏𝝈)∙𝒌𝒆∙𝜟𝜹

𝑯′+(𝝏𝑭/𝝏𝝈)∙𝒌𝒆∙(𝝏𝑮/𝝏𝝈)
)

𝝏𝑮

𝝏𝝈
 (18) 

in which 𝐻′ is the effective plastic modulus given by 

𝑯′ = −
𝝏𝑭

𝝏𝝃
∙

𝝏𝝃

𝝏𝒅𝒑 ∙
𝝏𝑮

𝝏𝝈
−

𝝏𝑭

𝝏𝝈
∙ (

𝝏𝒌𝒆

𝝏𝜹𝒑 ∙
𝝏𝑮

𝝏𝝈
) ∙ 𝜹𝒆 (19) 

The first term is the classic plastic modulus due to the hardening/softening of the yield surface 

and the second term is due to the degradation of the effective elastic stiffness 𝐤𝒆.  𝐻′ < 0 for 

softening materials,  𝐻′ > 0  for hardening materials, 𝐻′ = 0  for perfect yielding materials.  

Then, the relationship between the traction increment and total separation increment can be 

obtained: 

𝜟𝝈𝒊 = [𝒌𝒆 − 
(𝒌𝒆 ∙ 

𝝏𝑮

𝝏𝝈
)⨂(

𝝏𝑭

𝝏𝝈
 ∙ 𝒌𝒆)

𝑯′+
𝝏𝑭

𝝏𝝈
 ∙ 𝒌𝒆∙ 

𝝏𝑮

𝝏𝝈

+
(𝜹𝒆 ∙ 

𝝏𝒌𝒆
𝝏𝒅𝒑 ∙ 

𝝏𝑮

𝝏𝝈
)⨂(

𝝏𝑭

𝝏𝝈
 ∙ 𝒌𝒆)

𝑯′+
𝝏𝑭

𝝏𝝈
 ∙ 𝒌𝒆∙ 

𝝏𝑮

𝝏𝝈

 ] ∙ 𝜟𝜹 = 𝒌𝒆𝒑 ∙ 𝜟𝜹 (20) 

where 𝐤ep = 𝐤𝒆 + 𝐤𝒑 + 𝐤𝒅 is the elastoplastic tangential stiffness matrix which is the linear 

combination of the effective elastic stiffness 𝐤𝒆, the plastic stiffness matrix 𝐤𝒑, and the coupled 

damage-plastic stiffness matrix 𝐤𝒅 defined as: 

𝒌𝒆 = [

𝒌𝒏(𝟏 − 𝒅𝒏𝑯(𝝈𝒏)) 𝟎 𝟎

𝟎 𝒌𝒕𝟏(𝟏 − 𝒅𝒔𝑯(𝝈𝒏)) 𝟎

𝟎 𝟎 𝒌𝒕𝟐(𝟏 − 𝒅𝒔𝑯(𝝈𝒏))

] (21) 

𝒌𝒑 = − 
(𝒌𝒆 ∙ 

𝝏𝑮

𝝏𝝈
)⨂(

𝝏𝑭

𝝏𝝈
 ∙ 𝒌𝒆)

𝑯′+
𝝏𝑭

𝝏𝝈
 ∙ 𝒌𝒆∙ 

𝝏𝑮

𝝏𝝈

 (22) 

𝒌𝒅 =
(𝜹𝒆 ∙ 

𝝏𝒌𝒆
𝝏𝒅𝒑 ∙ 

𝝏𝑮

𝝏𝝈
)⨂(

𝝏𝑭

𝝏𝝈
 ∙ 𝒌𝒆)

𝑯′+
𝝏𝑭

𝝏𝝈
 ∙ 𝒌𝒆∙ 

𝝏𝑮

𝝏𝝈

 (23) 

The proposed coupled damage-plasticity traction separation law was implemented in ABAQUS 

using user-subroutine VUINTERACTION (ABAQUS Inc. 2014) which is used with the general 

contact interaction of the mortar joint interfaces.  For time step 𝑖 , each nodal point of the 

contacting surface is provided with the displacement increment Δ𝛅𝑖 and the previous state and 

internal variables i.e. 𝝃𝑖, 𝛅𝑖
𝑐𝑟, and 𝛅𝑖

𝑝
.  Then, the incremental traction separation law Eq. (20) are 

numerically integrated using the modified explicit Euler scheme with sub-stepping (Sloan et al. 

2001).   
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3 MODEL VALIDATION 

3.1 Shear tests 

All 14 required parameters of the proposed traction-separation law with coupled damage-plastic 

models are summarised in Table 1.  Many of the model parameters, i.e. the stiffness 𝑘̅𝑛 and 𝑘̅𝑠𝑖, 

the tensile and shear strengths 𝑓t0  and 𝑐t0 , the friction and dilation angles 𝜙0  and 𝜓0can be 

directly obtained from standard tensile and shear-compression strength tests or 

empirical/analytical relationships for specific types of masonry.   The monotonic shear tests on 

JG bricks with type B mortar  reported by van der Pluijm (1993) are simulated with the proposed 

model.  The model parameters summarized in Table 1.  The experiment results and the simulated 

shear stress-displacement curves are plotted together in Figure 2.  Good agreements between the 

simulated and the experimental behaviour can be observed.  The pressure-dependent shear stress-

displacement behaviour can be well simulated by the proposed model.  It is noted that the 

pressure-dependent mode II fracture energy as reported by van der Pluijm (1993)  was adopted in 

the simulation.  The cyclic shear test on clay bricks with 13 mm mortar joint thickness reported 

by Atkinson et al. (1988) are then simulated (Figure 3).  The resulted cyclic shear stress-

displacement behaviour with degradation of the friction angle leads to the hysteretic loops slowly 

varying during the loading cycles which can match the experiment results.   

 

Table 1. Values of the model parameters for the simulations of different tests. 

Parameters 

Monotonic shear tests  

(van der Pluijm 1993) 

Cyclic shear tests  

(Atkinson et al. 1988) 

Uniaxial tension tests  

(Almeida et al. 2002) 

𝑘̅𝑛 (MPa/mm) 209.9 471.4 741.1, 750.5b 

𝑘̅𝑠𝑖 (MPa/mm) 87.4 196.4 308.8, 312.7 b 

𝑓t0 (MPa) 0.62 0.085 1.78, 0.91 

𝑐0 (MPa) 0.88 0.128 2.67, 1.37 

𝐺𝐼𝐶  (N/mm) 0.00458 0.0242 0.01209, 0.00293 b 

𝐺𝐼𝐼𝐶  (N/mm) 0.058 0.1933 0.121, 0.02925 b 

𝜙0 (degree) 40.97 35.26 40 

𝜙r (degree) 36.87 34.72 32 

𝑚 (mm) 10547.4, 1217.7, 398.3a 50.4 511.9, 2944.5 b 

𝜓0 (degree) 27.7 0.544 8 

𝜓r (degree) 0 0 0 

𝑛 (mm) 15836.0, 1828.3, 598.1a 367.96 856.1, 4923.8 b 

𝑏𝑛 10 10 10 

𝑏𝑠 3 3 3 
aParameter values 𝜎𝑛 = −0.1,−0.5,−1.0 MPa. b For 𝜎𝑛 = −0.1,−0.5,−1.0 MPa. bParameter values for 1:3 mortar and 1:2:9 mortar 

respectively. 

 

3.2 Tensile tests  

The tensile properties of masonry units and mortar determined by standard uniaxial tension tests 

are relatively stable, while the tensile bonding strength between the units and mortar joints often 

shows signification variation that can be influenced by the test methods and the preparation 

procedures Almeida et al. (2002).  Nevertheless, the traction-separation relationship should be 

able to properly model the bonding behaviour of the masonry units and the mortar joints, which 

can dictate the global force-deformation behaviour of the masonry structures.  The uniaxial 

tension test on solid ceramic bricks with 1:3 (cement: sand) mortar (test M15) and 1:2:9 (cement: 

lime: sand) mortar (test M34) reported by  Almeida et al. (2002) are simulated by the proposed 

modelling.  The model parameters are summarised in Table1.  As shown in Figure 4, the simulated 
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tension stress-displacement curves agree well with the experimental results. But it should be 

emphasised that the tensile bonding behaviour of the masonry joints can show significant 

variations depending on the workmanship.  Hence, for practical design, the conservative values 

of the tensile strength and the mode I fracture energy shall be adopted. 

 

Figure 2. Experimental (Van derPluijm 1993) and simulated monotonic shear stress-displacement curves 
under different levels of normal compression. 

 

Figure 3. Experimental (Atkinson et al. 1988) and simulated cyclic shear stress-displacement curves. 

 

Figure 4. Experimental (Almeida et al. 2002) and simulated tensile stress-displacement curves. 
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4 CONCLUSIONS 

A new and rigorous coupled damage-plasticity traction-separation law was successfully 

developed and implemented for discrete finite element modelling (DFEM) to simulate the 

inelastic deformation and failure of masonry structures.  By proper calibration of the model 

parameters, a variety of mechanical behaviour of masonry structures can be accurately modelled 

including (1) the pressure-dependent friction and shear fracture behaviour, (2) the strength 

softening with inelastic work, (3) evolution of the friction angle, (4) the pressure-dependent 

dilation, (5) stiffness degradation due to the crack opening, (6) shear retention, and (7) 

disintegration of the masonry units.   

The proposed model was applied to simulate shear-compression tests, cyclic shear tests, and 

tension tests on the masonry joints.  Following the suggested calibration methods, the simulated 

results agree well with the experimental results.  Given its flexibility in modelling a range of 

mechanical behaviour and validated performances, the proposed model can be adopted for the 

detail and reliable analysis of the responses of masonry structures under different types of loading.    
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