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ABSTRACT: Shear in beams and punching shear in slabs, is a long-time hot topic for design and 

safety evaluation. Due to the brittle behavior in shear of the reinforced concrete (RC) and 

prestressed concrete (PC) members, the assessment of existing structures must be carried out 

using reliable models, and, if possible, models based in the mechanical principia, in order to 

clarify the physics behind the failure for practicing engineers. 

In this communication, a simplified model for shear in beams and punching shear in slabs will be 

summarized. The same mechanical model, originally derived for concrete beams reinforced with 

fiber reinforced polymers (FRP) longitudinal and/or transversal reinforcement, has been extended 

to many different particular cases, following always the basic mechanical principia usually 

considered in structural engineering. The model can be currently applied for two way slabs, one-

way slabs and reinforced concrete or prestressed beams. For beams, the case of slender and non-

slender beams may be solved in a continuous way, including the possibility of considering the 

different behavior of beams with rectangular, T- or I- cross section, or different shear 

reinforcement materials, such as steel, FRP or shape memory alloys (SMA). 

The shear strength predicted by the proposed simplified equations has been compared with the 

experimental results of 2399 tests and with the predictions by the Eurocode 2 and a more general 

background model also derived by the authors.  

1 INTRODUCTION 

Shear strength verification and design of concrete members is still an intensive research topic. 

When a reinforced or prestressed concrete element is subjected to a combination of shear and 

flexure, diagonal cracks appear and multi-axial stress states take place in regions that exhibit a 

markedly complex behavior, resulting the so-called shear resisting actions. These shear resisting 

actions contribute to the shear force transfer between the two portions of the element at each side 

of the crack. It is well-accepted that the following shear resisting actions exist (ASCE- ACI 

Committee-445, 1998): shear resisted in the un-cracked compression chord, shear transferred in 

the cracked zone of the web by means of aggregate interlock and residual tensile stresses, dowel 

action of the longitudinal reinforcement and the truss action requiring transversal reinforcement. 

The mechanics of the previous actions are very diverse and exhibit complex interactions among 

them; hence development of a universally accepted formulation to account for shear forces has 
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not been achieved yet and it is necessary to take important assumptions to derive compact 

expressions. In this paper, a brief description of the Multi-Action Shear Model (Marí, Bairán, et 

al., 2015) and its simplification, the Compression Chord Capacity Model (Cladera et al., 2016), 

is made, explaining how the models incorporate the contributions of the different shear transfer 

mechanisms. For beams, the case of slender and non-slender beams may be solved in a continuous 

way, including the possibility of considering the different behavior of beams with rectangular, T- 

or I- cross section, or different shear reinforcement materials, such as steel, FRP or SMA. The 

model can be also applied for two way slabs, as will be presented during next sections. Note that 

this communication presents, for the first time, the complete set of simplified equations that may 

be used in many different practical situations.  

2 GENERAL OVERVIEW OF THE MULTI-ACTION SHEAR MODEL (MASM) 

It is generally agreed that as the load increases in a RC member failing in shear, damage 

concentrates around a critical shear crack, originally a flexural crack, which arrives to the 

neighborhood of the flexural neutral axis (Fig. 1), this is usually called the first branch of the 

crack. Under incremental loading, a second branch of the crack develops inside the un-cracked 

concrete chord, which will connect the first branch of the crack and the load application point, 

producing failure. The main assumption of the MASM, backed by the empirical observation of 

many authors (Zararis and Papadakis, 2001; Carmona et al., 2007; Yu et al., 2016), is that when 

the second branch of the critical crack develops, the load does not significantly increase, as 

softening of the concrete in the compression zone initiates. During the crack propagation inside 

the flexural compression zone, redistribution of internal forces may occur, affecting the relative 

importance of the different shear resisting actions.  

To associate the initiation of the shear failure to the propagation of the second branch of the 

critical crack results in a significant simplification of the problem, since it allows formulating a 

failure criterion expressed in terms of concrete stresses in the compression chord (Kupfer’s biaxial 

failure envelope). This failure criterion depends on the compression and tensile strength of 

concrete, which have less scatter than other parameters needed in kinematical criteria.  

Therefore, the Multi-Action Shear Model, based on classic mechanics, proposes explicit 

equations for the different shear transfer actions considering that the tip of the shear critical crack 

has propagated until the flexural neutral axis. The shear strength, Vu in Eq. (1), is the sum of the 

shear resisted by the transverse reinforcement, if it exists, Vs, and by the shear resisted in the un-

cracked compression chord, Vc, the shear transferred across web cracks, Vw, and the dowel action 

in the longitudinal reinforcement, Vl, see Fig. 2. The shear strength must be lower than the shear 

force that produce failure in the concrete struts, Vu,max, in Eq. (2). See Table 1 for the dimensionless 

equations governing each contributing component. See reference (Cladera et al., 2016) for further 

information related to these equations, factors, and parameters. 

    ·u c w l s ctm c w l s ctmV V V V V f b d v v v v f b d            
 (1) 
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Strut crushing, Eq. (2), may occur in cases when a large contribution of Vs exists, so this check is 

necessary. For this cases, the authors have adopted the formulation of current EC-2 (European 

Committee for Standardization, 2002), derived from plasticity models, but assuming that the angle 

of the compression strut is equal to the angle of the critical crack. 

  



   

3 

 

Table 1. Summary of dimensionless shear contributing components. 

Shear resisting action Dimensionless equations 

Compression chord 𝑣𝑐 = 𝜁 [(0.88 + (0.20 + 0.50
𝑏

𝑏𝑤
) 𝑣𝑠)

𝑥

𝑑
+ 0.02]

𝑏𝑣,𝑒𝑓𝑓

𝑏
𝐾𝑝 (3) 

Cracked concrete web 𝑣𝑤 = 167
𝑓𝑐𝑡𝑚

𝐸𝑐𝑚

𝑏𝑤

𝑏
(1 +

2𝐺𝑓𝐸𝑐𝑚

𝑓𝑐𝑡𝑚
2 𝑑0

) (4) 

Longitudinal reinforcement 
𝑖𝑓 𝑣𝑠 > 0 → 𝑣𝑙 = 0.23

𝛼𝑒·𝜌𝑙

1−𝑥/𝑑
 (5a) 

𝑖𝑓 𝑣𝑠 = 0 → 𝑣𝑙 = 0 (5b) 

Shear reinforcement  
0.85

cot
· ·

sw yw s sw yw

s s

ctm ctm

A f d A f
v d x

s f b d s f b d


 
  

   
 (6) 

 

 
Figure 1. Critical shear crack evolution.          Figure 2. MASM contributing actions at failure.  

 
Figure 3. Contributing actions for a T beam and notation.  

3 THE COMPRESSION CHORD CAPACITY MODEL (CCCM) 

The previously presented model, the MASM, with explicit equations for each shear resisting 

action may result too complex for daily engineering practice. For this reason, a transparent 

simplification was carried out (Cladera et al., 2016), with the main premise that the shear 

transferred by the compression chord is the main resisting action in the considered failure state. 

To derive the more compact expression, vw (Eq 4) and vl (Eq. 5) have been incorporated into vc 

(Eq. 3) with constant average values, and the equations have been reformatted. 

The main equations governing the shear strength for the CCCM are presented in Table 2, where 

x/d is the relative neutral axis depth and it is equal to x0/d for RC members without axial loads 

(Eq. 12). The relative neutral axis depth may be simplified as proposed by the expression at right 

hand in Eq. (12). The effective flanges width for shear strength (Figure 3) is given by bv,eff (see 

Eq. 13), being bw the web width. For the determination of fcd in Eq. (9), fck shall not be taken 

greater than 60 MPa. This limitation is provided due to the larger observed variability in shear 

strength of members with higher strength concrete. Finally, d0 is equal to the effective depth of 

the cross-section, d, but not less than 100 mm.   

For members with small depth and not heavily reinforced in bending, i.e. some one-way slabs 

without shear reinforcement, the shear transferred by residual tensile stresses across the critical 

shear crack is probably comparable to the shear transferred by the uncracked concrete in the 

compression zone. However, the equation for the nominal shear strength provided by concrete,  

First 

branch 

Second branch 

Neutral axis depth 
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Table 2. Summary of the CCCM equations.  

Equations Expressions 

Shear strength 𝑉𝑅𝑑 = 𝑉𝑐𝑢 + 𝑉𝑠𝑢 ≤ 𝑉𝑅𝑑,𝑚𝑎𝑥 (7) 

Strut crushing 𝑉𝑅𝑑,𝑚𝑎𝑥 = 𝛼𝑐𝑤𝑏𝑤𝑧𝜈1𝑓𝑐𝑑
𝑐𝑜𝑡𝜃+𝑐𝑜𝑡𝛼

1+𝑐𝑜𝑡2𝜃
 (8) 

Concrete contribution 𝑉𝑐𝑢 = 0.3𝜁
𝑥

𝑑
𝑓𝑐𝑑

2/3
𝑏𝑣,𝑒𝑓𝑓𝑑 ≮ 𝑉𝑐𝑢,𝑚𝑖𝑛 = 0.25 (𝜁𝐾𝑐 +

20

𝑑0
) 𝑓𝑐𝑑

2/3
𝑏𝑤𝑑 (9) 

Shear reinforcement 𝑉𝑠𝑢 = 1.4
𝐴𝑠𝑤

𝑠
𝑓𝑦𝑤𝑑(𝑑𝑠 − 𝑥)𝑠𝑖𝑛𝛼 (cot 𝜃 + cot 𝛼) (10) 

Factors Expressions 

Size and slenderness effect ζ =
2

√1+
d0

200

(
d

a
)

0.2

≮ 0.45 (11) 

Relative neutral axis depth 
𝑥0

𝑑
= 𝛼𝑒𝜌𝑙 (−1 + √1 +

2

𝛼𝑒𝜌𝑙
) ≈ 0.75(𝛼𝑒𝜌𝑙)

1/3  (12) 

Effective flanges width 
𝑖𝑓 𝑥 ≤ ℎ𝑓 →  𝑏𝑣,𝑒𝑓𝑓 = 𝑏𝑣 = 𝑏𝑤 + 2ℎ𝑓 ≤ 𝑏 (13a) 

𝑖𝑓 𝑥 > ℎ𝑓 →  𝑏𝑣,𝑒𝑓𝑓 ≈ 𝑏𝑤 + (𝑏𝑣 − 𝑏𝑤) (
ℎ𝑓

𝑥
)

3/2

 (13b) 

Crack inclination cot 𝜃 =
0.85𝑑𝑠

𝑑𝑠−𝑥
≤ 2.5 (14) 

expression on the left in Eq. 9, was derived from the MASM assuming that the shear transferred 

in the compression zone was the predominant transfer action. For this reason, a minimum value 

for the shear strength provided by concrete, Vcu,min, is defined (on the right in Eq. 9), with the 

assumption that the residual tensile stresses that crosses the first branch are significant and that 

the contribution on the compression zone must be limited. 

The shear resisted due to the shear reinforcement is given by Eq. 10. The constant 1.4 in Eq. 10 

is not a calibration factor, but a term to take into account the confinement of the concrete in the 

compression chord caused by the stirrups (Cladera et al., 2016). The previous equation is 

equivalent to consider the vertical force of the stirrups intersected by the first branch of the critical 

crack. The crack inclination, , is an important parameter in the shear strength (Eq. 14). Based on 

experimental observations made by the authors and summarized in (Cladera et al., 2015; Marí, 

Bairán, et al., 2015), the horizontal projection of the first branch of the flexural-shear critical 

crack is considered to be equal to 0.85ds, where ds is the distance between the maximum 

compressed concrete fiber and the centroid of the mild steel tensile reinforcement. 

3.1 Effects of prestressing in the shear strength 

In partially prestressed members, in which flexural cracks may develop at service under certain 

load combinations, a shear-flexure failure mechanism may take place, as it occurs in many RC 

members. In such cases the crack inclination, the neutral axis depth, the stress levels, and, 

consequently, the shear transferred by the uncracked concrete chord and by the stirrups, are 

affected by the level of the prestressing force (Marí et al., 2016). In a simplified way, to apply the 

CCCM for prestressed or axially loaded members subjected to compression, the neutral axis depth 

can be estimated in a simplified manner by means of Eq. 15, which represents an interpolation 

between x=x0 and x=h for a fully prestressed section (decompression). Note that the increase of 

the neutral axis depth depends on the ratio 
𝜎𝑐𝑝

𝜎𝑐𝑝+𝑓𝑐𝑡𝑚
 and not only on cp.  

 𝑁𝐸𝑑 ≥ 0 →   𝑥 = 𝑥0 + 0.80(ℎ − 𝑥0) (
𝑑

ℎ
)

𝜎𝑐𝑝

𝜎𝑐𝑝+𝑓𝑐𝑡𝑚
≤ ℎ (15) 

Taking into account the neutral axis depth given by Eq. 15, it is possible to apply all the other 

Equations given in Table 2 to obtain the shear strength of members subjected to compression. 

Some heavily prestressed concrete members may be uncracked in bending. In this case, the 

previously presented models (MASM and CCCM) are not valid, as the main assumption of the 
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initial bending crack would be incorrect. For prestressed members without stirrups and no flexural 

cracking, the derivation of a design expression according to Mohr’s circle of stresses assuming 

Kupfer’s biaxial failure surface as failure criteria is carried out in (Marí et al., 2016). In the case 

of PC members with shear reinforcement, once the web cracks, the stirrups start working and a 

shear force higher than the cracking shear can be resisted. For this reason, in PC members with 

shear reinforcement, it is assumed that MASM and CCCM may always be used. 

3.2 Effects of tensile forces in the shear strength 

Tensile forces reduce the neutral axis depth. A parametrical study using a non-linear numerical 

model considering tension stiffening was carried out to study the variation of the neutral axis 

depth for tensile loads and the concomitant bending moment, resulting in Eq. (16). Note that, for 

this case, it is necessary to explicitly take into account the concomitant bending moment, and, 

therefore, for predicting the shear strength the procedure requires performing iterations, but the 

model is straightforward for design purposes. 

 𝑁𝐸𝑑 < 0 →   𝑥 = 𝑥0 (1 + 0.1
𝑁𝐸𝑑𝑑𝑠

𝑀𝐸𝑑
) ≥ 0  (16) 

The shear strength will depend on the ratio NEd/MEd, and therefore, it will not be affected by the 

load partial factors. In contrast, the shear strength in current EC-2 depends on NEd, and the shear 

strength is reduced when the load partial factors are applied to the axial tensile force. 

3.3 Non-slender beams 

Non-slender beams are considered those in which a/d is less than 2.5 (Fig. 4). This situation takes 

place in deep beams or in slender beams when there are point loads applied near the supports. The 

model has been recently extended for this situation, although it has not been yet published. Non-

slender beams show higher shear strength than slender beams. This is considered in the proposed 

model through the following differential aspects of the observed structural behavior: a) the 

different position and inclination of the critical crack, which runs straight from the inner ends of 

the bearing and loading plates, resulting in a value cot  = a/d. Such value increments the size 

and slenderness effect factor, Eq. 11, of the model, which is proportional to (d/a)0.2; b) the 

influence of the vertical stresses produced by the loading plate, on the stress state in the critical 

point of the un-cracked concrete chord. Such confining stresses increment the shear capacity of 

the compression chord; c) the effects of the disturbed distribution of strains and stresses when 

loads are applied close to the support, which modifies the neutral axis depth compared to a slender 

beam. Moreover, in non-slender beams, the use of horizontal reinforcement distributed along the 

web is very common to control the crack widths, and this reinforcement has been also considered. 

The equations given in Table 2 are valid in this case, substituting Eqs. (9)-(10) by (17)-(20). 

 
Figure 4. Non-slender beam: notation and forces acting on the free body part of the beam. 
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 𝑉𝑐𝑢 = 0.3 
𝑥

𝑑
𝐾𝑎𝑑𝑓𝑐𝑚

2/3
𝑏𝑑       (17) 

 𝑉𝑠𝑢 = 𝑉𝑠𝑤𝑦 + 𝑉𝑠𝑤𝑥     (18) 

 𝑉𝑠𝑤𝑦 =  
𝐴𝑠𝑤𝑦

𝑠𝑥
(𝑑 − 𝑥1) cot 𝜃 𝜎𝑠𝑤𝑦                        (19) 

 𝑉𝑠𝑤𝑥 =  0.5 
𝐴𝑠𝑤𝑥

 𝑠𝑦  
(𝑑 − 𝑥1) tan 𝜃 𝜎𝑠𝑤𝑥                (20) 

where Kad=1+(2.5-a/d)2. The stress at the vertical stirrups, swy, and at the longitudinal flexural 

reinforcement, swx, may be lower than the yielding stress at ULS, and may be obtained: 

 𝜎𝑠𝑤𝑥 =
𝑓𝑐𝑡𝑚 𝐾𝑎𝑑

𝜌𝑙

𝑥1

𝑑
𝑐𝑜𝑡𝜃 ≤ 𝑓𝑦𝑤                                  (21) 

 𝜎𝑠𝑤𝑦 =
𝑓𝑐𝑡𝑚 𝐾𝑎𝑑

𝜌𝑙

𝑥1

𝑑
𝑐𝑜𝑡3𝜃 ≤ 𝑓𝑦𝑤  (22) 

where l=As/bd. In order to account for the increment of the neutral axis depth, a parabolic 

variation of x is assumed between a/d =2.5 (x1=x, B-region) and a/d=0 (x1=d) resulting: 

 
𝑐1

𝑑
=

𝑐

𝑑
+ (1 −

𝑐

𝑑
)(1 − 0.4

𝑎

𝑑
)2 ≤ 1 (23) 

3.4 FRP reinforced concrete members 

The extension of the CCCM for its use in FRP-RC members without stirrups was carried out at 

(Marí, Cladera, Ribas, et al., 2018), altogether with the extension for Steel Fibre Reinforced 

Concrete Beams (not included in this communication). The modulus of elasticity of the FRP bars 

is taken into account in the model through the neutral axis depth x/d, which is a function of the 

ratios between the modulus of elasticity of the reinforcement (steel or FRP) and that of the 

concrete. In addition, crack widths are bigger than in identical steel reinforced concrete beams, 

thus reducing the aggregate interlock and the residual tensile stresses transferred along the crack. 

Consequently, the minimum shear Vcu,min of Eq (9) is not meaningful for FRP reinforced beams. 

For the same reinforcement ratio and applied bending moment, compressive concrete stresses are 

higher in FRP-RC beams than in steel RC beams, and the assumption of linear concrete behavior 

in compression may deviate from the actual behavior. Therefore, the neutral axis depth computed 

by means of Eq. (12), is lower than the actual one, and the shear stress that may be resisted by the 

compressive chord is higher as compressive stresses are higher. These two effects compensate, 

and Eq. (9) continues to be valid (disregarding Vcu, min  as already stated).  

As no yielding takes place in the FRP bars, the maximum bending moment of an FRP reinforced 

section will be that producing a concrete compressive strain c=cu 0.004. For this purpose, when 

calculating the shear strength, it should be verified that a brittle flexural failure does not occur 

before reaching the shear strength given by Eq. (9). 

For beams with FRP stirrups, their contribution can be considered according to (Oller et al., 2015).  

4 PUNCHING SHEAR FOR RC SLABS  

A punching strength mechanical model, based on the beam shear model previously presented, 

were published at (Marí, Cladera, Oller, et al., 2018), considering: 

 The distribution of radial bending moments in a slab supported on isolated columns, different 

from those produced in cantilever beams: the critical crack in a slab is partially developed 

inside a D (discontinuity) region: the critical crack develops directly to the intersection 

between the column face and the compressed slab face. 

 According to the adopted failure criterion, the critical perimeter is the perimeter where the 

critical crack reaches the un-cracked compressed zone. Therefore, its distance to the column 

face depends on the span length, on the load level, on the longitudinal reinforcement ratio, and 
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on the cracking moment per unit length. Its value ranges from 0.4d to 0.7d, so for simplicity 

reasons a reasonable value of 0.5d is adopted. 

 Due to the proximity of the critical perimeter to the column face, the confining vertical stresses 

introduced by the column affect the state of stresses at the critical point where failure initiates, 

thus enhancing the shear capacity of the slab. 

 The tangential bending moments around the column produce compressive stresses that also 

confine the concrete compression chord of the slab. Such confinement in the tangential 

direction increases the concrete compression strength in the radial direction, affecting the 

Kupfer’s biaxial failure envelope in the compression-tension branch and enhancing the 

concrete chord capacity to withstand shear stresses. 

 The efficiency of the shear reinforcement depends on its position and anchorage capacity. An 

expression for the maximum stress that the reinforcement may develop before losing its anchor 

capacity, based on bond, was presented at (Marí, Cladera, Oller, et al., 2018). 

The full set of equations may not be reproduced here for respecting the maximum length of the 

communication, but they may be found at (Marí, Cladera, Oller, et al., 2018). 

5 VERIFICATION OF THE PROPOSED MODEL AND CONCLUSIONS 

The comparison between the predicted shear strength by the CCCM, MASM and EC-2 and the 

experimental shear strength measured in 2399 tested members is presented in Table 3. The 

information is presented separately for 10 different previously published shear-databases. For the 

different studied cases, the coefficients of variation of the Vtest/Vpred ratio computed using the 

CCCM or MASM are lower than for the Eurocode-2 predictions. The comparison of the 

predictions by CCCM and EC2 for the four initial databases included in Table 3 (RC and PC 

slender beams) is also graphically presented in Figure 5. The CCCM has also been satisfactorily 

used for critical shear beams externally strengthened using Shape Memory Alloys (Rius et al., 

2019), although the comparison is not shown here for brevity.  

This communication has presented, for the first time, the complete set of the CCCM equations 

that may be used in many different practical situations, showing the advantages of using a solid 

mechanical model. The model was derived with clearly formulated assumptions, allowing their 

review when necessary for many different cases. 

Table 3. Verification of the proposed model: mean value and COV(%) for Vtest/Vpred ratio.  

Database # 

tests 

CCCM MASM Eurocode 2 

Mean COV Mean COV Mean COV 
RC slender beams without shear reinforcement 784 1.17 18.5 1.04 18.9 1.10 27.9 
RC slender beams with shear reinforcement 170 1.16 14.1 1.05 17.0 1.47 26.4 
PC slender beams without shear reinforcement 214 1.18 16.5 1.02 19.6 1.56 29.8 
PC slender beams with shear reinforcement 117 1.17 18.6 1.05 15.1 1.54 37.2 
RC non-slender beams without web reinforcement 153 1.35 26.7 - - 1.70 28.2 
RC non-slender beams with vertical web reinforcement 171 1.25 19.3 - - 2.41 74.0 
RC-non slender beams with vert. and horiz. web reinf. 86 1.28 22.3 - - 2.94 88.3 
RC slender beams reinf. with FRP bars w/o stirrups 144 1.16 16.9 1.09 14.9 - - 
Slabs without shear reinforcement 328 1.19 15.1 - - 1.17 17.6 
Slabs with shear reinforcement 232 1.17 14.9 - - 1.07 17.9 
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Figure 5. Correlation between the predictions and the experimental results for 4 studied databases. 
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