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ABSTRACT: This study is intended to investigate feasibility of local damage detection on a steel 
plate girder bridge utilizing traffic-induced vibration. A field experiment on the bridge was 
conducted, and acceleration responses of the bridge under a single moving vehicle were 
monitored. Fatigue cracks observed in actual steel plate girder bridges were considered in the 
experiment, and artificial damages were introduced to the girder. Firstly, changes in the modal 
frequencies of the steel plate girder bridge due the artificial damages are investigated. The modal 
properties identified from the experiment are comparable to the relevant finite element model. 
Secondly, a damage sensitive feature from system matrces is introduced, and feasibility of 
detecting local damage by means of Bayesian hypothesis testing is examined. The damage 
sensitive features correspond to the modal properties identified in the experiment. The proposed 
hypothesis test successfully detected anomaly event due to the local damage. Furthermore, the 
location of the damage is roughly estimated by the proposed damaged indicator.  

1 INTRODUCTION 

Management of aging infrastructure is a crucially important issue confronting civil engineering 
professionals. To reduce the potential risk of structural failure as well as life cycle costs, an 
efficient inspection method is desirable for preventive maintenance. Techniques of structural 
health monitoring (SHM) based on vibration measurements have been attracting bridge 
authorities. Changes in structural integrity of bridges engender changes in their modal properties 
that are identifiable from vibration data (Deramaeker et al. 2007, Zhang, 2007). For an actual truss 
bridge, Chang & Kim (2016) verified feasibility for damage detection using its modal properties. 

To detect changes in the modal properties effectively, several studies have developed damage 
indicators that are directly defined from a mechanical system model representing the bridge 
vibration. For instance, Nair et al. (2006) investigated damage sensitive-feature consisting of 
univariate autoregressive (AR) coefficients for a model building. To enable reliable decision-
making for bridge maintenance, the authors newly proposed the damage indicator using Bayesian 
statistics and verified feasibility for damage detection on the actual truss bridge (Goi & Kim, 
2017). The proposed damage indicator is referred as Bayes factor in this study. 

This study investigates the feasibility of the vibration-based SHM to detect fatigue cracks on steel 
plate girder bridges. A damage experiment on an actual plate girder bridge is performed 
introducing artificial cracks on the girder. The modal frequencies of the target bridge and the 
proposed Bayes factor are respectively assessed to detect the introduced damage. Also, a finite 
element (FE) model of the target bridge is composed to investigate the mechanical behavior of 
the bridge before and after the damage. 



   

2 
 

2 METHODOLOGY 

2.1 Modal identification 

This study adopts the stochastic subspace identification (SSI) (van Overschee & De Moor, 1996) 
to identify the modal properties of the target bridge from the experimental data. The dynamic 
system is modeled as the following state space model 

𝐱(𝑘 + 1) = 𝐀𝐱(𝑘) + 𝐰(𝑘)
𝐲(𝑘) = 𝐂𝐱(𝑘) + 𝐯(𝑘)  (1) 

where x(k) and y(k) respectively represent the state vector of structure and vector of the measured 
data at each time step k. w(k) and v(k) respectively denote the process noise and measurement 
noise. They are assumed as stationary white noise. System matrices A and C are estimated by 
means of the least square method for minimal prediction error of the state x(k) given by the 
forward Kalman filter. The poles of the dynamic system provide modal properties of the dynamic 
system. 

The algorithm for the SSI is described as follows briefly. Firstly, we obtain the projection matrix 
Oi that is estimated as follows. 

𝑶. = 𝐘0𝐘123𝐘1𝐘124
5𝐘1 (2) 

where (・)5 denotes the Moore-Penrose pseudo inverse matrix. Yf and Yp are the block Hankel 
matrices defined as follows. 
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The singular value decomposition (SVD) is then applied to factorize 𝑶. as 

𝑶. = 𝐔𝐒𝐕2 = (𝐔I𝐔J) K
𝐒I 0
0 𝐒J

L (𝐕I𝐕J)2 ≃ 𝐔I𝐒I𝐕I2 (4) 

where 𝐔 and 𝐕 are unitary matrices with an appropriate size, and S is a matrix whose diagonal 
elements are non-negative and the other elements are 0. The diagonal elements of S are known as 
singular values of Oi. Letting singular values in S be listed in descending order, the components 
in 𝐔I𝐒I𝐕I2  mostly approximate the elements in Oi. The state sequence 𝐗. =
[𝐱(𝑖) 𝐱(𝑖 + 1) … 𝐱(𝑖 + 𝑗 − 1) ] predicted by the Kalman filter in least square sense is 
obtained as follows. 

𝐗. = 𝐒I
I/J𝐕I2 (5) 

The system matrices A and C in Eq. 1 are estimated using the state sequence given as Eq. 5. The 
modal properties are converted from the estimated system matrices according to the well-known 
modal analysis theory (Heylen et al., 1997). 

2.2 Damage indicator 

This study adopts Bayes factor which is previously proposed by the authors (Goi & Kim, 2017). 
Let the reference data is given from a healthy bridge, and test data is newly observed from the 
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bridge whose health condition is unknown. The proposed Bayes factor assess whether the 
dynamic properties of the test data is changed from the ones of reference data or not. 

The linear system model given in Eq. 1 can be simplified to the following vector autoregressive 
model (He & De Roeck, 1999). 

𝐲(𝑘) = 𝐖R
𝐲(𝑘 − 1)

⋮
𝐲(𝑘 − 𝑝)

T + 𝐯(𝑘) (6) 

where 𝐖  stands for the matrix composed of the regressive coefficients for the vector 
autoregressive model. It is known that the modal properties can be estimated from those regressive 
coefficients (Heylen et al., 1997). The proposed method assumes Gaussian noise for the noise 
vector 𝐯(𝑘) , and provides hypothesis testing to detect changes in the modal properties by 
evaluating the changes in the regressive coefficients. To localize damage, this study adopts the 
following regressive model which corresponds to the j-th raw of the Eq. 6. 

𝑦{W}(𝑘) = 𝒘{W} R
𝐲(𝑘 − 1)

⋮
𝐲(𝑘 − 𝑝)

T + 𝑣{W}(𝑘) (7) 

where 𝑦{W}(𝑘) and 𝑣{W}(𝑘) respectively stand for the j-th element of the vectors 𝐲(𝑘) and 𝐯(𝑘), 
and 𝒘{W} stands for the j-th raw of the matrix W. 

Bayesian inference (Bishop, 2016) enables to produce posterior distribution of the regressive 
coefficient according to the following Bayes theorem. 

p ]𝒘{W}, 𝜎WJ`𝒟b
{W}c =

1]𝒟d|𝒘{f},gf
hc1]𝒘{f},gf

hc

1(𝒟d)
 (8) 

where p(⋅) denotes the probability density function (PDF), 𝜎WJ denotes the variance of the j-th 
element of the noise vector 𝑣{W}(𝑘), 𝒟b

{W}  represents the reference data obtained from the j-th 
measurement location on the bridge under healthy condition, and p ]𝒟b

{W}|𝒘{W}, 𝜎WJc stands for the 
likelihood function for the matrices 𝒘{W}  and 𝜎WJ . Assuming non-informative prior (Jeffreys, 
1946), the posterior distribution is converted from the likelihood function, which is easily given 
from the regressive model in Eq. 7. 

According to the functional form of the posterior distribution, the parameters with low variance 
are extracted from the regressive coefficients. This study regards those extracted parameters as 
damage-sensitive features. The hypothesis testing to detect changes in the damage sensitive 
features of the test data is formulated through the PDFs representing the following two hypotheses 
p3𝒘{W}, 𝜎WJjℋl4  and p3𝒘{W}, 𝜎WJjℋI4 , where p3𝒘{W}, 𝜎WJjℋl4  denotes the null hypothesis for 
which the damage sensitive features are not altered from the reference data and p3𝒘{W}, 𝜎WJjℋI4 
denotes the alternative hypothesis for which the damage sensitive features are altered from the 
reference data. The above two PDFs respectively provide evidence functions for the test data as 

p ]𝒟m
{W}|ℋnc = ∬p]𝒟m

{W}|𝒘{W}, 𝜎WJc p3𝒘{W}, 𝜎WJ|ℋn4 d𝒘{W}d𝜎WJ  (for 𝜅 = 0,1) (9) 

where 𝒟m
{W} represents the test data obtained from the j-th measurement location. The Bayes factor 

is defined as the ratio of the two evidence functions, i.e., 

𝐵{W} =
1]𝒟s

{f}|ℋtc

1]𝒟s
{f}|ℋuc

 (10) 
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Kass and Raftery (1995) suggested interpreting the Bayes factor on the logarithm scale. For 
example, if 2ln𝐵 is over 10, then the evidence of the alternative hypothesis ℋI against the null 
hypothesis ℋl is interpreted to be ‘very strong’. This study thus investigates the logarithm-scaled 
Bayes factor 2ln𝐵{W} as a damage indicator. 

3 FIELD EXPERIMENT AND NUMERICAL MODEL 

3.1 Field experiment 

The field experiment was conducted on an actual steel plate girder bridge as shown in Fig. 1 
where sensor deployment is also appeared. The span length of the bridge is 40m and width of the 
bridge is 4.0m. Ten accelerometers were installed on the lower flanges to measure the vertical 
vibrations. The displacements of the both ends of the span were measured by displacement 
sensors. Artificial damages imitating fatigue cracks at the girder end near the base plate of the 
supports were introduced by severing the lower flange and the web plate with an Oxyacetylene 
cutting torch. The location of the artificial damage is at the east main girder on the bearing at Ab1 
abutment (see Fig. 1). Fig. 2 shows the detailed damage location. The artificial damage comprises 
two damage levels. One is the lower flange cut (hereafter called DMG1) and another is the web 
plate cut (hereafter called DMG2). The bridge condition before the artificial damage is regarded 
as the intact condition (hereafter called INT). 

3.2 Finite element model 

To investigate the structural characteristics of the bridge, the eigenvalue analysis using the FE 
model of the bridge was conducted by utilizing ABAQUS 6.14. The bridge model, shown in 
 

 
Figure 1. Sensor deployment and damage scenario. 
 

   
Figure 2. Detailed damage location. Figure 3. Finite element model. 
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Fig. 3, was built based on the documents of periodic inspection and information obtained from 
the field experiment for the original design documents of this bridge are not available. The 
concrete deck, main girder, vertical stiffener and horizontal stiffeners were modelled with shell 
element, and cross beam and lateral bracing were modelled with beam element. According to the 
results obtained from the static loading test, the boundary conditions were given as follows: Fixed 
supports were assumed on the Ab1 abutment, and roller supports with longitudinal springs were 
assumed on the Ab2 abutment. Specific gravities of steel and concrete were assumed as 7.85 and 
2.40 respectively. Young's moduli of steel and reinforced concrete were assumed as 210 GPa and 
22.02 GPa, respectively. 

Since the bridge model has some differences from the actual bridge due to deterioration and 
construction errors, the bridge model needs model updating for calibration of structural 
parameters. The cross entropy (CE) method was applied to update the bridge model so that the 
natural frequencies of the bridge model become comparable to those of the actual bridge 
(McGetrick et al., 2015). The spring constant on Ab2 abutment was calibrated by the model 
update, and the artificial damages introduced in the field experiment were modelled as pseudo 
cracks in the updated FE model to investigate the change in structural characteristics. This crack 
was created by removing the connection of elements (see Fig. 3). The eigenvalue analysis was 
conducted for each damage scenario considered in the field experiments.  

4 RESULTS 

4.1 Identified modal properties 

Mode shapes identified from the experimental vibration data by means of the SSI method are 
shown in Fig. 4. This study focuses on three bending modes and the two torsional modes which 
were stably identified.  

Histograms of the identified frequencies in each bridge condition are shown in Fig. 5 with normal 
distribution fits, where the bin width was chosen as 0.01Hz. The histogram was created utilizing 
30 samples of the identified frequencies. The statistical distributions show that frequencies for the 
2nd and 3rd bending modes and the 2nd torsional mode tend to decrease as damage becomes 
severe, i.e., in the order of INT, DMG1 and DMG2. It demonstrates decrease of bending stiffness 
of the plate girder due to the artificial damage. However, the frequencies of the 1st bending mode 
and the 1st torsional mode tend to increase as damage becomes severe. 

Frequencies and mode shapes from the eigenvalue analysis utilizing the calibrated FE model are 
compared to those identified from monitoring data. In the model calibration, using the experiment 
data of INT scenario as reference, the initial finite element model is correlated and tuned towards 
frequencies. The calibrated FE model of the bridge led to eigen-frequencies of 3.13Hz, 9.36Hz, 
 

 
Figure 4. Mode shapes identfied from the FE model and the experimental vibration data. 
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22.06Hz, 5.03Hz and 10.69Hz for the 1st, 2nd and 3rd bending modes and 1st and 2nd torsional 
modes, respectively. 

Mode shapes obtained from the eigenvalue analysis are also shown in Fig. 4. MAC value between 
mode shapes from the eigenvalue analysis and those identified from experimental data were 0.96 
for the 2nd torsional mode and more than 0.99 for the other modes. This means the mode shapes 
from the eigenvalue analysis and experiment were comparable with each other. According to the 
FE analysis the frequencies for all modes decreased according to damage severity. The decrease 
of the 1st bending frequency was much less than the frequencies of the other modes. Changes in 
frequency due to the damage obtained from the eigenvalue analysis showed similar tendency to 
those from experiment data except the 1st bending and torsional modes. 

It is noteworthy that the frequency distribution of the 1st bending mode moved to higher 
frequency region in the order of INT, DMG1 and DMG2 in the experiment as shown in Fig. 5. 
One reason might be change in the boundary condition at Ab2 abutment since the longitudinal 
reaction at the support by deflection under deadload was increased due to the damage and led to 
increasing spring constant at the support, which was found from a sensitivity analysis for the 
change in stiffness and longitudinal spring constant at the support. 

4.2 Feature extraction and damage detection 

The relationship between the modal properties and the proposed damage sensitive feature is 
investigated in advance to the local damage detection. In the following discussions, data obtained 
from the intact bridge is adopted as the reference data. As mentioned in Section 2.2, the damage 
sensitive features are extracted according to the posterior distribution under the given reference 
data. The damage sensitive features can be converted to modal properties considering the relevant 
state space model (Goi & Kim 2018). 

Fig. 6 shows six mode shapes identified from the vector regressive model reproduced by the 
damage sensitive features. Apparently, the extracted damage sensitive features are relevant to the 
bending and torsional modes listed in Fig. 4. This observation is comparable to both of the 
experimental modal identification and analytical results from the FE model. 

 
Figure 5. Histograms of the identified frequencies.  
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According to the above discussions, the Bayes factor discussed hereafter presumably evaluates 
changes in the modal properties of the six modes observed in Fig. 4 and Fig. 6. The first 30 
samples measured under the INT scenario are adopted as the reference data. The latter 30 samples 
are adopted as test samples for validation. The time series measured under DMG1 and DMG2 
scenarios are adopted as the test samples for damage detection. 

Bayes factor given in Eq. 10 enables to quantify anomaly at each of the measurement locations. 
Fig. 7 shows the observed Bayes factors. Here, each of the markers depicts the Bayes factor 
calculated for measurement location A1 to A10, for each of the vehicle loadings. The red 
horizontal line is the critical value such that the evidence function of the null and alternative 
hypotheses are equivalent, i.e., 2 ln𝐵 = 0. When the Bayes factor exceeds the critical values, the 
changes in damage sensitive features are detected. 

The Bayes factors promptly enable to detect anomaly caused by the damage. This observation 
indicates that the changes in modal properties in the six modes listed in Fig. 6 are concisely 
detected by the proposed Bayes factor. Furthermore, the severity of the damage is successfully 
quantified in the results. It is also noteworthy that the local Bayes factors at A1 and A6, which 
are nearest to the Ab1 abutment, are relatively higher than the others are as shown in Fig. 7. 
Although the precise location of the damage is not identified from those results since the Bayes 
factors at A6 provides relatively higher values than A1 that is nearer to the damage location, rough 
estimation of the damage location is still possible.  

5 CONCLUSIONS 

This study investigated the feasibility of damage detection of steel plate girder bridges by means 
of vibration-based SHM. To investigate actual behavior of the bridges, artificial damages 
imitating fatigue crack were introduced to an actual plate girder bridge and vehicle loading test 

 
Figure 7. Bayes factors for the damage experiment.  
 

   

   
Figure 6. Mode shapes relevant to the damage sensitive features. 
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was performed. The feasibility of the modal frequency and damage indicator using Bayesian 
statistics were investigated. 

Modal properties identified from the experimental data and the relevant finite element model were 
mostly comparable. However, the frequency of the 1st bending and torsional modes resulted in 
an increase due to damage in the field experiment whereas those obtained from the FE model 
decreased. Aiming at application of FE models to convincing damage diagnosis, investigation 
into mechanical reason for the changes in the 1st bending and torsional modes due to damage, 
and how to construct reasonable FE model are remained to be solved. 

The proposed feature extraction method indicated that the damage sensitive features relevant to 
the identified modal properties both in the experiment and FE model. The proposed hypothesis 
testing successfully detected changes in the modal properties due to the artificial damage. The 
severity of the damage is successfully quantified by the proposed damage indicator. The localized 
damage indicator roughly estimated the location of the damage. 
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